Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D1353-D1359, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399499

RESUMEN

The Open Targets Platform (https://platform.opentargets.org/) is an open source resource to systematically assist drug target identification and prioritisation using publicly available data. Since our last update, we have reimagined, redesigned, and rebuilt the Platform in order to streamline data integration and harmonisation, expand the ways in which users can explore the data, and improve the user experience. The gene-disease causal evidence has been enhanced and expanded to better capture disease causality across rare, common, and somatic diseases. For target and drug annotations, we have incorporated new features that help assess target safety and tractability, including genetic constraint, PROTACtability assessments, and AlphaFold structure predictions. We have also introduced new machine learning applications for knowledge extraction from the published literature, clinical trial information, and drug labels. The new technologies and frameworks introduced since the last update will ease the introduction of new features and the creation of separate instances of the Platform adapted to user requirements. Our new Community forum, expanded training materials, and outreach programme support our users in a range of use cases.

2.
Nature ; 551(7678): 92-94, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29059683

RESUMEN

Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.


Asunto(s)
Neoplasias de la Mama/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Asia/etnología , Pueblo Asiatico/genética , Sitios de Unión/genética , Neoplasias de la Mama/diagnóstico , Simulación por Computador , Europa (Continente)/etnología , Femenino , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos , Medición de Riesgo , Factores de Transcripción/metabolismo , Población Blanca/genética
3.
Nucleic Acids Res ; 49(D1): D1302-D1310, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33196847

RESUMEN

The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target-disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.


Asunto(s)
Antineoplásicos/uso terapéutico , Drogas en Investigación/uso terapéutico , Bases del Conocimiento , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Programas Informáticos , Antineoplásicos/química , Bases de Datos Factuales , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Drogas en Investigación/química , Humanos , Internet , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología
4.
Nucleic Acids Res ; 49(D1): D1311-D1320, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33045747

RESUMEN

Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Enfermedades Inflamatorias del Intestino/genética , Terapia Molecular Dirigida/métodos , Sitios de Carácter Cuantitativo , Programas Informáticos , Cromatina/química , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Internet , Fenotipo , Carácter Cuantitativo Heredable
5.
Am J Hum Genet ; 99(4): 903-911, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27640304

RESUMEN

Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cromosomas Humanos Par 5/genética , Factor 10 de Crecimiento de Fibroblastos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Estrógenos/metabolismo , Alelos , Estudios de Casos y Controles , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Haplotipos/genética , Humanos , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
6.
Am J Hum Genet ; 97(1): 22-34, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26073781

RESUMEN

Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 10/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Edad , Pueblo Asiatico/genética , Proteínas Relacionadas con la Autofagia , Índice de Masa Corporal , Mapeo Cromosómico , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Luciferasas , Oportunidad Relativa , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Regresión , Transactivadores/metabolismo , Población Blanca/genética
8.
Hum Mol Genet ; 24(10): 2966-84, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652398

RESUMEN

We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 9 , Sitios Genéticos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Pueblo Asiatico/genética , Mapeo Cromosómico , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/genética , Femenino , Factor de Transcripción GATA3/genética , Estudios de Asociación Genética , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Persona de Mediana Edad , Riesgo , Población Blanca/genética
9.
Hum Mol Genet ; 24(1): 285-98, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25168388

RESUMEN

Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.


Asunto(s)
Neoplasias de la Mama/genética , Caspasa 8/genética , Cromosomas Humanos Par 2/genética , Proteínas/genética , Población Blanca/genética , Neoplasias de la Mama/etnología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Polimorfismo de Nucleótido Simple
10.
Breast Cancer Res ; 18(1): 64, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27459855

RESUMEN

BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.


Asunto(s)
Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Mapeo Cromosómico , Cromosomas Humanos Par 12 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Alelos , Proteína BRCA1/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Epigénesis Genética , Femenino , Genotipo , Haplotipos , Heterocigoto , Humanos , Mutación , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Riesgo , Población Blanca/genética
11.
Int J Cancer ; 139(6): 1303-1317, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27087578

RESUMEN

Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2) = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.


Asunto(s)
Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Mapeo Cromosómico , Cromosomas Humanos Par 8/genética , Variación Genética , Sitios de Carácter Cuantitativo , Alelos , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Riesgo , Población Blanca/genética
12.
Am J Hum Genet ; 92(4): 489-503, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23540573

RESUMEN

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 11/genética , Ciclina D1/genética , Elementos de Facilitación Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Unión , Estudios de Casos y Controles , Línea Celular Tumoral , Cromatina/química , Cromatina/genética , Inmunoprecipitación de Cromatina , Ciclina D1/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Femenino , Factor de Transcripción GATA3/antagonistas & inhibidores , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Luciferasas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Elementos Silenciadores Transcripcionales/genética , Proteína Elk-4 del Dominio ets/antagonistas & inhibidores , Proteína Elk-4 del Dominio ets/genética , Proteína Elk-4 del Dominio ets/metabolismo
13.
Am J Pathol ; 183(4): 1038-1051, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23973388

RESUMEN

Genome-wide association studies have identified 72 loci associated with breast cancer susceptibility. Seventeen of these are known to predispose to other cancers. High-penetrance susceptibility loci for breast cancer usually result from coding alterations, principally in genes involved in DNA repair, whereas almost all of the associations identified through genome-wide association studies are found in noncoding regions of the genome and are likely to involve regulation of genes in multiple pathways. However, the genes underlying most associations are not yet known. In this review, we summarize the findings from genome-wide association studies in breast cancer and describe the genes and mechanisms that are likely to be involved in the tumorigenesis process. We also discuss approaches to fine-scale mapping of susceptibility regions used to identify the likely causal variant(s) underlying the associations, a major challenge in genetic epidemiology. Finally, we discuss the potential impact of such findings on personalized medicine and future avenues for screening, prediction, and prevention programs.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Alelos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Penetrancia , Transducción de Señal/genética
14.
PLoS Genet ; 7(7): e1002165, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21814516

RESUMEN

Genetic mapping studies have identified multiple cancer susceptibility regions at chromosome 8q24, upstream of the MYC oncogene. MYC has been widely presumed as the regulated target gene, but definitive evidence functionally linking these cancer regions with MYC has been difficult to obtain. Here we examined candidate functional variants of a haplotype block at 8q24 encompassing the two independent risk alleles for prostate and breast cancer, rs620861 and rs13281615. We used the mapping of DNase I hypersensitive sites as a tool to prioritise regions for further functional analysis. This approach identified rs378854, which is in complete linkage disequilibrium (LD) with rs620861, as a novel functional prostate cancer-specific genetic variant. We demonstrate that the risk allele (G) of rs378854 reduces binding of the transcription factor YY1 in vitro. This factor is known to repress global transcription in prostate cancer and is a candidate tumour suppressor. Additional experiments showed that the YY1 binding site is occupied in vivo in prostate cancer, but not breast cancer cells, consistent with the observed cancer-specific effects of this single nucleotide polymorphism (SNP). Using chromatin conformation capture (3C) experiments, we found that the region surrounding rs378854 interacts with the MYC and PVT1 promoters. Moreover, expression of the PVT1 oncogene in normal prostate tissue increased with the presence of the risk allele of rs378854, while expression of MYC was not affected. In conclusion, we identified a new functional prostate cancer risk variant at the 8q24 locus, rs378854 allele G, that reduces binding of the YY1 protein and is associated with increased expression of PVT1 located 0.5 Mb downstream.


Asunto(s)
Cromosomas Humanos Par 8/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias de la Próstata/genética , ARN no Traducido/genética , Alelos , Secuencia de Bases , Sitios de Unión/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Secuencia de Consenso , Femenino , Regulación Neoplásica de la Expresión Génica , Genotipo , Células HCT116 , Humanos , Masculino , Modelos Biológicos , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/patología , ARN no Traducido/metabolismo , Activación Transcripcional/genética , Factor de Transcripción YY1/metabolismo
15.
Nat Genet ; 37(8): 863-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025115

RESUMEN

We identified a locus on chromosome 6q16.3-q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT-11 and A-->G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A-->G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Prueba de Tolerancia a la Glucosa , Obesidad/genética , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Adulto , Estudios de Casos y Controles , Niño , Haplotipos , Humanos , ARN Mensajero/genética
16.
Curr Opin Struct Biol ; 80: 102568, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963162

RESUMEN

Evidence from human genetics supporting the therapeutic hypothesis increases the likelihood that a drug will succeed in clinical trials. Rare and common disease genetics yield a wide array of alleles with a range of effect sizes that can proxy for the effect of a drug in disease. Recent advances in large scale population collections and whole genome sequencing approaches have provided a rich resource of human genetic evidence to support drug target selection. As the range of phenotypes profiled increases and ever more alleles are discovered across world-wide populations, these approaches will increasingly influence multiple stages across the lifespan of a drug discovery programme.


Asunto(s)
Descubrimiento de Drogas , Genómica , Humanos , Fenotipo , Genética Humana
17.
Nat Genet ; 55(3): 389-398, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823319

RESUMEN

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Asunto(s)
Biología Celular , Células , Enfermedad , Estudios de Asociación Genética , Pleiotropía Genética , Estudios de Asociación Genética/métodos , Humanos , Ubiquitinación/genética , Procesamiento Postranscripcional del ARN/genética , Células/metabolismo , Células/patología , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/tendencias , Enfermedad/genética , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología
18.
Nat Genet ; 55(6): 1066-1075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308670

RESUMEN

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Tetranitrato de Pentaeritritol , Humanos , Estudio de Asociación del Genoma Completo , Inmunidad Innata
19.
EBioMedicine ; 81: 104112, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35772218

RESUMEN

BACKGROUND: Recent omic studies prioritised several drug targets associated with coronavirus disease 2019 (COVID-19) severity. However, little evidence was provided to systematically estimate the effect of drug targets on COVID-19 severity in multiple ancestries. METHODS: In this study, we applied Mendelian randomization (MR) and colocalization approaches to understand the putative causal effects of 16,059 transcripts and 1608 proteins on COVID-19 severity in European and effects of 610 proteins on COVID-19 severity in African ancestry. We further integrated genetics, clinical and literature evidence to prioritise drug targets. Additional sensitivity analyses including multi-trait colocalization and phenome-wide MR were conducted to test for MR assumptions. FINDINGS: MR and colocalization prioritized four protein targets, FCRL3, ICAM5, ENTPD5 and OAS1 that showed effect on COVID-19 severity in European ancestry. One protein target, SERPINA1 showed a stronger effect in African ancestry but much weaker effect in European ancestry (odds ratio [OR] in Africans=0.369, 95%CI=0.203 to 0.668, P = 9.96 × 10-4; OR in Europeans=1.021, 95%CI=0.901 to 1.157, P = 0.745), which suggested that increased level of SERPINA1 will reduce COVID-19 risk in African ancestry. One protein, ICAM1 showed suggestive effect on COVID-19 severity in both ancestries (OR in Europeans=1.152, 95%CI=1.063 to 1.249, P = 5.94 × 10-4; OR in Africans=1.481, 95%CI=1.008 to 2.176; P = 0.045). The OAS1, SERPINA1 and ICAM1 effects were replicated using updated COVID-19 severity data in the two ancestries respectively, where alternative splicing events in OAS1 and ICAM1 also showed marginal effects on COVID-19 severity in Europeans. The phenome-wide MR of the prioritised targets on 622 complex traits provided information on potential beneficial effects on other diseases and suggested little evidence of adverse effects on major complications. INTERPRETATION: Our study identified six proteins as showing putative causal effects on COVID-19 severity. OAS1 and SERPINA1 were targets of existing drugs in trials as potential COVID-19 treatments. ICAM1, ICAM5 and FCRL3 are related to the immune system. Across the six targets, OAS1 has no reliable instrument in African ancestry; SERPINA1, FCRL3, ICAM5 and ENTPD5 showed a different level of putative causal evidence in European and African ancestries, which highlights the importance of more powerful ancestry-specific GWAS and value of multi-ancestry MR in informing the effects of drug targets on COVID-19 across different populations. This study provides a first step towards clinical investigation of beneficial and adverse effects of COVID-19 drug targets. FUNDING: No.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Análisis de la Aleatorización Mendeliana , COVID-19/genética , Estudio de Asociación del Genoma Completo , Humanos , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple
20.
Nat Genet ; 53(11): 1527-1533, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711957

RESUMEN

Genome-wide association studies (GWASs) have identified many variants associated with complex traits, but identifying the causal gene(s) is a major challenge. In the present study, we present an open resource that provides systematic fine mapping and gene prioritization across 133,441 published human GWAS loci. We integrate genetics (GWAS Catalog and UK Biobank) with transcriptomic, proteomic and epigenomic data, including systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues. We identify 729 loci fine mapped to a single-coding causal variant and colocalized with a single gene. We trained a machine-learning model using the fine-mapped genetics and functional genomics data and 445 gold-standard curated GWAS loci to distinguish causal genes from neighboring genes, outperforming a naive distance-based model. Our prioritized genes were enriched for known approved drug targets (odds ratio = 8.1, 95% confidence interval = 5.7, 11.5). These results are publicly available through a web portal ( http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica/métodos , Modelos Genéticos , Mapeo Cromosómico/métodos , Epigenómica , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA