Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 197, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277135

RESUMEN

BACKGROUND: Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory (HIPLAB) and the second from the Novartis Institute of Biomedical Research (NIBR). RESULTS: Despite substantial differences in experimental and analytical pipelines, the combined datasets revealed robust chemogenomic response signatures, characterized by gene signatures, enrichment for biological processes and mechanisms of drug action. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as conserved systems-level, small molecule response systems. CONCLUSIONS: Our results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells.


Asunto(s)
Saccharomyces cerevisiae , Animales , Resistencia a Medicamentos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
2.
Nat Chem Biol ; 15(5): 549, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833779

RESUMEN

In the version of this article originally published, several co-authors had incorrect affiliation footnote numbers listed in the author list. Tatiana Cañeque and Angelica Mariani should each have affiliation numbers 3, 4 and 5, and Emmanuelle Charafe-Jauffret should have number 6. Additionally, there was an extra space in the name of co-author Robert P. St.Onge. These errors have been corrected in the HTML and PDF versions of the paper and the Supplementary Information PDF.

3.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742123

RESUMEN

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Línea Celular Tumoral , GTP Fosfohidrolasas , Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HeLa , Humanos , Membrana Dobles de Lípidos , Glicoproteínas de Membrana/metabolismo , Nucleótidos , Dominios Homólogos a Pleckstrina/fisiología , Unión Proteica , Transducción de Señal , Relación Estructura-Actividad , Sulfotransferasas/metabolismo
4.
PLoS Genet ; 12(9): e1006275, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27588687

RESUMEN

The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Tetrahidrofolato Deshidrogenasa/metabolismo , Alelos , Teorema de Bayes , Antagonistas del Ácido Fólico/uso terapéutico , Humanos , Metotrexato/uso terapéutico , Mutación , Neoplasias/genética , Tetrahidrofolato Deshidrogenasa/genética
5.
Nucleic Acids Res ; 44(6): 2706-26, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26748095

RESUMEN

The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.


Asunto(s)
Cromatina/enzimología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Histonas/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Acetilación/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Daño del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Niacinamida/farmacología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Estrés Fisiológico
6.
Microgravity Sci Technol ; 30(3): 195-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31258252

RESUMEN

Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

7.
Planta ; 244(6): 1229-1240, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27510723

RESUMEN

MAIN CONCLUSION: Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Plantas/fisiología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Péptidos Catiónicos Antimicrobianos/fisiología , Estudio de Asociación del Genoma Completo , Concentración de Iones de Hidrógeno , Inmunidad de la Planta/fisiología , Lectinas de Plantas/metabolismo , Lectinas de Plantas/fisiología , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología
8.
Nat Chem Biol ; 10(1): 76-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292071

RESUMEN

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transducción de Señal , Unión Proteica , Relación Estructura-Actividad
9.
Nat Genet ; 39(2): 199-206, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17206143

RESUMEN

Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.


Asunto(s)
ARN Helicasas DEAD-box/genética , Eliminación de Gen , Genes Fúngicos , Metilmetanosulfonato/toxicidad , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Reparación del ADN , Modelos Genéticos , Datos de Secuencia Molecular , RecQ Helicasas/genética
10.
Apoptosis ; 20(7): 948-59, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25832785

RESUMEN

To identify new biological vulnerabilities in acute myeloid leukemia, we screened a library of natural products for compounds cytotoxic to TEX leukemia cells. This screen identified the novel small molecule Deoxysappanone B 7,4' dimethyl ether (Deox B 7,4), which possessed nanomolar anti-leukemic activity. To determine the anti-leukemic mechanism of action of Deox B 7,4, we conducted a genome-wide screen in Saccharomyces cerevisiae and identified enrichment of genes related to mitotic cell cycle as well as vacuolar acidification, therefore pointing to microtubules and vacuolar (V)-ATPase as potential drug targets. Further investigations into the mechanisms of action of Deox B 7,4 and a related analogue revealed that these compounds were reversible microtubule inhibitors that bound near the colchicine site. In addition, Deox B 7,4 and its analogue increased lysosomal V-ATPase activity and lysosome acidity. The effects on microtubules and lysosomes were functionally important for the anti-leukemic effects of these drugs. The lysosomal effects were characteristic of select microtubule inhibitors as only the Deox compounds and nocodazole, but not colchicine, vinca alkaloids or paclitaxel, altered lysosome acidity and induced lysosomal disruption. Thus, our data highlight a new mechanism of action of select microtubule inhibitors on lysosomal function.


Asunto(s)
Cromonas/farmacología , Guayacol/análogos & derivados , Leucemia Mieloide Aguda/metabolismo , Lisosomas/efectos de los fármacos , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Guayacol/farmacología , Humanos , Leucemia Mieloide Aguda/patología , Lisosomas/química , Lisosomas/metabolismo , Ratones , Saccharomyces cerevisiae , ATPasas de Translocación de Protón Vacuolares/metabolismo
11.
Nat Methods ; 8(2): 159-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217751

RESUMEN

Phenotypes that might otherwise reveal a gene's function can be obscured by genes with overlapping function. This phenomenon is best known within gene families, in which an important shared function may only be revealed by mutating all family members. Here we describe the 'green monster' technology that enables precise deletion of many genes. In this method, a population of deletion strains with each deletion marked by an inducible green fluorescent protein reporter gene, is subjected to repeated rounds of mating, meiosis and flow-cytometric enrichment. This results in the aggregation of multiple deletion loci in single cells. The green monster strategy is potentially applicable to assembling other engineered alterations in any species with sex or alternative means of allelic assortment. To test the technology, we generated a single broadly drug-sensitive strain of Saccharomyces cerevisiae bearing precise deletions of all 16 ATP-binding cassette transporters within clades associated with multidrug resistance.


Asunto(s)
Eliminación de Gen , Técnicas de Inactivación de Genes/métodos , Proteínas Fluorescentes Verdes/análisis , Familia de Multigenes , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fluorescentes Verdes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
12.
PLoS Genet ; 7(11): e1002353, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102822

RESUMEN

In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H(2)O(2)). Surprisingly, there was little overlap in the genes required for acquisition of H(2)O(2) tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H(2)O(2) in each case. Integrative network analysis of these results with respect to protein-protein interactions, synthetic-genetic interactions, and functional annotations identified many processes not previously linked to H(2)O(2) tolerance. We tested and present several models that explain the lack of overlap in genes required for H(2)O(2) tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance.


Asunto(s)
Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/genética , Respuesta al Choque Térmico/genética , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Aptitud Genética/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor , Peróxido de Hidrógeno/farmacología , Tipificación de Secuencias Multilocus , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Saccharomyces cerevisiae/fisiología , Cloruro de Sodio/farmacología
13.
PLoS Genet ; 7(10): e1002332, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028670

RESUMEN

Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.


Asunto(s)
Anticarcinógenos/metabolismo , Cantaridina/metabolismo , Metabolismo de los Lípidos/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Actinas/metabolismo , Animales , Anticarcinógenos/farmacología , Cantaridina/análogos & derivados , Cantaridina/farmacología , Pared Celular/genética , Pared Celular/metabolismo , Escarabajos/química , Citoesqueleto/metabolismo , Glicerofosfolípidos/metabolismo , Homeostasis/genética , Redes y Vías Metabólicas , Metilación , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/metabolismo , Estrés Fisiológico/genética , Biología de Sistemas/métodos
14.
Genome Biol ; 25(1): 10, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178179

RESUMEN

The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.


Asunto(s)
Cerveza , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética
15.
Nat Chem Biol ; 8(1): 46-56, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22173359

RESUMEN

The serendipitous discovery of penicillin inspired intensive research into how small molecules affect basic cellular processes and their potential to treat disease. Biochemical and genetic approaches have been fundamental for clarifying small-molecule modes of action. Genomic technologies have permitted the use of chemical-genetic strategies that comprehensively study compound-target relationships in the context of a living cell, providing a systems biology view of both the cellular targets and the interdependent networks that respond to chemical stress. These studies highlight the fact that in vitro determinations of mechanism rarely translate into a complete understanding of drug behavior in the cell. Here, we review key discoveries that gave rise to the field of chemical genetics, with particular attention to chemical-genetic strategies developed for bakers' yeast, their extension to clinically relevant microbial pathogens, and the potential of these approaches to affect antimicrobial drug discovery.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Descubrimiento de Drogas , Genómica , Animales , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Nat Chem Biol ; 7(12): 891-3, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22057127

RESUMEN

The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(CYP27A1), suggesting that dafadine can be used to interrogate developmental control and longevity in other animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Inhibidores Enzimáticos del Citocromo P-450 , Inhibidores Enzimáticos/farmacología , Isoxazoles/farmacología , Longevidad/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Isoxazoles/química , Larva/efectos de los fármacos , Estructura Molecular , Piperidinas/química , Piridinas/química , Estereoisomerismo , Relación Estructura-Actividad
17.
PLoS Genet ; 6(7): e1001024, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20657825

RESUMEN

The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.


Asunto(s)
Genoma Fúngico , Longevidad/genética , Saccharomyces cerevisiae/genética , Envejecimiento/genética , Autofagia , Eliminación de Gen , Metilación , Mitocondrias , Biosíntesis de Proteínas , Transporte de Proteínas , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo
18.
Nat Genet ; 31(4): 400-4, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12134146

RESUMEN

High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.


Asunto(s)
Genómica/métodos , Enfermedades Mitocondriales/genética , Saccharomyces cerevisiae/genética , Transporte Biológico , División Celular/genética , Ciclo del Ácido Cítrico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Genoma Fúngico , Genoma Humano , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Secuencia
19.
Mol Cell Biol ; 43(11): 566-595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811746

RESUMEN

In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Sirtuinas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origen de Réplica , Acetilación , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Replicación del ADN , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Histona Desacetilasas/metabolismo
20.
BMC Bioinformatics ; 13: 245, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009392

RESUMEN

BACKGROUND: Chemical genomics is an interdisciplinary field that combines small molecule perturbation with traditional genomics to understand gene function and to study the mode(s) of drug action. A benefit of chemical genomic screens is their breadth; each screen can capture the sensitivity of comprehensive collections of mutants or, in the case of mammalian cells, gene knock-downs, simultaneously. As with other large-scale experimental platforms, to compare and contrast such profiles, e.g. for clustering known compounds with uncharacterized compounds, a robust means to compare a large cohort of profiles is required. Existing methods for correlating different chemical profiles include diverse statistical discriminant analysis-based methods and specific gene filtering or normalization methods. Though powerful, none are ideal because they typically require one to define the disrupting effects, commonly known as batch effects, to detect true signal from experimental variation. These effects are not always known, and they can mask true biological differences. We present a method, Bucket Evaluations (BE) that surmounts many of these problems and is extensible to other datasets such as those obtained via gene expression profiling and which is platform independent. RESULTS: We designed an algorithm to analyse chemogenomic profiles to identify potential targets of known drugs and new chemical compounds. We used levelled rank comparisons to identify drugs/compounds with similar profiles that minimizes batch effects and avoids the requirement of pre-defining the disrupting effects. This algorithm was also tested on gene expression microarray data and high throughput sequencing chemogenomic screens and found the method is applicable to a variety of dataset types. CONCLUSIONS: BE, along with various correlation methods on a collection of datasets proved to be highly accurate for locating similarity between experiments. BE is a non-parametric correlation approach, which is suitable for locating correlations in somewhat perturbed datasets such as chemical genomic profiles. We created software and a user interface for using BE, which is publically available.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Animales , Análisis por Conglomerados , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Análisis de Secuencia de ADN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA