RESUMEN
Dark matter with Planck-scale mass (≃10^{19} GeV/c^{2}) arises in well-motivated theories and could be produced by several cosmological mechanisms. A search for multiscatter signals from supermassive dark matter was performed with a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based detector at SNOLAB. No candidate signals were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between 8.3×10^{6} and 1.2×10^{19} GeV/c^{2}, and ^{40}Ar-scattering cross sections between 1.0×10^{-23} and 2.4×10^{-18} cm^{2}. These results are interpreted as constraints on composite dark matter models with two different nucleon-to-nuclear cross section scalings.
RESUMEN
This Letter reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 ton day) of data taken during the initial filling phase demonstrates the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage <1.2×10^{-7} (90% C.L.) between 15 and 31 keV_{ee}. No candidate signal events are observed, which results in the leading limit on weakly interacting massive particle (WIMP)-nucleon spin-independent cross section on argon, <1.2×10^{-44} cm^{2} for a 100 GeV/c^{2} WIMP mass (90% C.L.).
RESUMEN
The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from 39 Ar beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.
RESUMEN
In August 2011, one of the earliest cases of influenza A(H3N2) variant [A(H3N2)v] virus infection was hospitalized with severe illness. To investigate the potential for healthcare-associated transmission of influenza A(H3N2)v, we evaluated both healthcare providers and patient contacts of the case. We found that healthcare-associated transmission was unlikely.