Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 21(3): e49129, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32030864

RESUMEN

Signalling endosomes are essential for trafficking of activated ligand-receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin-like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS.


Asunto(s)
Transporte Axonal , Endosomas , Animales , Axones/metabolismo , Endosomas/metabolismo , Ratones , Neuronas Motoras , Transducción de Señal
2.
Trends Biochem Sci ; 40(10): 597-610, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26410600

RESUMEN

The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets.


Asunto(s)
Proteínas Quinasas/metabolismo , Transporte Axonal/fisiología , Citoplasma/metabolismo , Dineínas/metabolismo , Humanos , Microtúbulos/metabolismo , Enfermedades Neurodegenerativas/metabolismo
3.
Cell Death Dis ; 9(6): 596, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789529

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the degeneration of upper and lower motor neurons. Defects in axonal transport have been observed pre-symptomatically in the SOD1G93A mouse model of ALS, and have been proposed to play a role in motor neuron degeneration as well as in other pathologies of the nervous system, such as Alzheimer's disease and hereditary neuropathies. In this study, we screen a library of small-molecule kinase inhibitors towards the identification of pharmacological enhancers of the axonal retrograde transport of signalling endosomes, which might be used to normalise the rate of this process in diseased neurons. Inhibitors of p38 mitogen-activated protein kinases (p38 MAPK) were identified in this screen and were found to correct deficits in axonal retrograde transport of signalling endosomes in cultured primary SOD1G93A motor neurons. In vitro knockdown experiments revealed that the alpha isoform of p38 MAPK (p38 MAPKα) was the sole isoform responsible for SOD1G93A-induced transport deficits. Furthermore, we found that acute treatment with p38 MAPKα inhibitors restored the physiological rate of axonal retrograde transport in vivo in early symptomatic SOD1G93A mice. Our findings demonstrate the pathogenic effect of p38 MAPKα on axonal retrograde transport and identify a potential therapeutic strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Transporte Axonal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Acetilcarnitina/farmacología , Animales , Transporte Axonal/efectos de los fármacos , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Miembro Posterior/efectos de los fármacos , Miembro Posterior/fisiopatología , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Músculos/efectos de los fármacos , Músculos/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Quinazolinonas/farmacología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Superóxido Dismutasa/metabolismo , Toxina Tetánica/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
J Neurosci Methods ; 257: 26-33, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26424507

RESUMEN

BACKGROUND: Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neurological disease is therefore crucial to improve our understanding of disease pathogenesis and for the identification of novel therapeutics. NEW METHOD: Here, we describe a method for the in vivo imaging of axonal transport of signalling endosomes in the sciatic nerve of live, anaesthetised mice. RESULTS: This method allows the multiparametric, quantitative analysis of in vivo axonal transport in motor and sensory neurons of adult mice in control conditions and during disease progression. COMPARISON WITH EXISTING METHODS: Previous in vivo imaging of the axonal transport of signalling endosomes has been limited to studies in nerve explant preparations or non-invasive approaches using magnetic resonance imaging; techniques that are hampered by major drawbacks such as tissue damage and low temporal and spatial resolution. This new method allows live imaging of the axonal transport of single endosomes in the sciatic nerve in situ and a more sensitive analysis of axonal transport kinetics than previous approaches. CONCLUSIONS: The method described in this paper allows an in-depth analysis of the characteristics of axonal transport in both motor and sensory neurons in vivo. It enables the detailed study of alterations in axonal transport in rodent models of neurological diseases and can be used to identify novel pharmacological modifiers of axonal transport.


Asunto(s)
Transporte Axonal/fisiología , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo , Anestesia , Animales , Carbocianinas , Endosomas/metabolismo , Colorantes Fluorescentes , Pie , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Músculo Esquelético/metabolismo , Nervio Ciático/metabolismo , Programas Informáticos , Grabación en Video/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA