Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 25(1): 168-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225354

RESUMEN

Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antígenos de Histocompatibilidad Menor , Proteínas Proto-Oncogénicas c-myc , Proteínas de Unión al ARN , Animales , Humanos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glioblastoma/metabolismo , Glioma/patología , Antígenos de Histocompatibilidad Menor/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
PLoS Pathog ; 11(6): e1004920, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26067441

RESUMEN

It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/ß1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues.


Asunto(s)
Cápside/virología , Ciclo Celular/fisiología , Interacciones Huésped-Parásitos/fisiología , Virus Diminuto del Ratón/fisiología , Infecciones por Parvoviridae/virología , Ensamble de Virus/fisiología , Animales , Cápside/metabolismo , Proteínas de la Cápside , Línea Celular , Núcleo Celular/virología , Fibroblastos/virología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones
3.
Cell Rep ; 36(10): 109673, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496248

RESUMEN

Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/virología , Células Madre Neoplásicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Fosforilación , Ratas Desnudas , Transducción de Señal/fisiología , Replicación Viral/fisiología
5.
Cell Rep ; 27(10): 2921-2933.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167138

RESUMEN

Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerborst, maintains NSC quiescence, preventing premature activation of InR/PI3K/Akt signaling. Conversely, an increase in Mob4 and Cka levels promotes NSC reactivation. Mob4 and Cka are essential to recruit PP2A/Mts into a complex with Hippo kinase, resulting in Hippo pathway inhibition. We propose that Mob4/Cka/Mts functions as an intrinsic molecular switch coordinating Hippo and InR/PI3K/Akt pathways and enabling NSC reactivation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Insulina/metabolismo , Transcriptoma/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Proliferación Celular/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Análisis de la Célula Individual
6.
Virology ; 518: 184-194, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29524834

RESUMEN

The T1 parvovirus Minute Virus of Mice (MVM) was used to study the roles that phosphorylation and N-terminal domains (Nt) configuration of capsid subunits may play in icosahedral nuclear viruses assembly. In synchronous MVM infection, capsid subunits newly assembled as two types of cytoplasmic trimeric intermediates (3VP2, and 1VP1:2VP2) harbored a VP1 phosphorylation level fivefold higher than that of VP2, and hidden Nt. Upon nuclear translocation at S phase, VP1-Nt became exposed in the heterotrimer and subsequent subviral assembly intermediates. Empty capsid subunits showed a phosphorylation level restored to VP1:VP2 stoichiometry, and the Nt concealed in their interior. However ssDNA-filled virus maturing at S/G2 lacked VP1 phosphorylation and one major VP2 phosphopeptide, and exposed VP2-Nt. Endosomal VP2-Nt cleavage resulted in VP3 subunits devoid of any phospholabel, implying that incoming viral particles specifically harbor a low phosphorylation status. Phosphorylation provides a mechanistic coupling of parvovirus nuclear assembly to the cell cycle.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus Diminuto del Ratón/fisiología , Ensamble de Virus/fisiología , Animales , Anticuerpos Antivirales , Proteínas de la Cápside/genética , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Humanos , Ratones , Virus Diminuto del Ratón/genética , Fosforilación , Dominios Proteicos , Subunidades de Proteína , Conejos
7.
Curr Cancer Drug Targets ; 15(4): 352-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714699

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant histological type of glioma. It exhibits an extremely aggressive action including invasion of large zones of brain parenchyma. Even after the application of surgery, radio and chemotherapy, the effect and survival for patients with GBM continue to be very poor. The PI3K/AKT/mTOR is a key pathway in the regulation of the proliferation of cancer cells. This is the reason to consider the mTOR inhibitors such as rapamycin analogs as an encouraging therapy for malignant glioma, but current investigations suggest that single inhibition of mTOR may be insufficient. For this reason, there is a need for the use of more than one agent rationally combined. METHODS: In this study, we have evaluated the therapeutic potential of the combination of two different drugs: intraperitoneal rapamycin and convection enhanced delivery of nanoliposomes containing the topoisomerase I inhibitor CPT-11. The effect was analyzed by flow cytometry, cell growth, immunocytochemistry and immunohistochemistry, and rodent orthotopic xenograft survival analysis. RESULTS: The combination presented remarkable efficacy in a survival study. We present an increase in survival of 6-fold in xenotransplanted animals without rise in toxicity. CONCLUSION: In summary, we propose a very powerful new combination therapy for glioma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas , Camptotecina/análogos & derivados , Glioblastoma , Sirolimus/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Camptotecina/farmacología , Línea Celular Tumoral , Monitoreo de Drogas , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Infusiones Parenterales , Irinotecán , Liposomas , Ratas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inhibidores de Topoisomerasa I/farmacología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS One ; 6(12): e28753, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174890

RESUMEN

Glioblastomas (GBM) may contain a variable proportion of active cancer stem cells (CSCs) capable of self-renewal, of aggregating into CD133(+) neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA). In doing so, we found an off-target nucleostemin RNAi (shRNA22) that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Interferencia de ARN , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Apoptosis , Agregación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica/patología , Proteínas de Unión al GTP/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glicoproteínas/metabolismo , Humanos , Cinética , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Péptidos/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Desnudas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA