Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(13): 5301-5306, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35760394

RESUMEN

The low mass density and high mechanical strength of graphene make it an attractive candidate for suspended-membrane energy transducers. Typically, the membrane size dictates the operational frequency and bandwidth. However, in many cases it would be desirable to both lower the resonance frequency and increase the bandwidth, while maintaining overall membrane size. We employ focused ion beam milling or laser ablation to create kirigami-like modification of suspended pure-graphene membranes ranging in size from microns to millimeters. Kirigami engineering successfully reduces the resonant frequency, increases the displacement amplitude, and broadens the effective bandwidth of the transducer. Our results present a promising route to miniaturized wide-band energy transducers with enhanced operational parameter range and efficiency.


Asunto(s)
Grafito , Diseño de Equipo , Transductores , Vibración
2.
Nat Mater ; 17(2): 204, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29358774

RESUMEN

This corrects the article DOI: 10.1038/nmat4795.

3.
Nat Mater ; 16(5): 522-525, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27820812

RESUMEN

Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

4.
Nano Lett ; 16(11): 7142-7147, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27685639

RESUMEN

The atomic structure, stability, and dynamics of defects in hexagonal boron nitride (h-BN) are investigated using an aberration-corrected transmission electron microscope operated at 80 kV between room temperature and 1000 °C. At temperatures above 700 °C, parallelogram- and hexagon-shaped defects with zigzag edges become prominent, in contrast to the triangular defects typically observed at lower temperatures. The appearance of 120° corners at defect vertices indicates the coexistence of both N- and B-terminated zigzag edges in the same defect. In situ dynamics studies show that the hexagonal holes grow by electron-induced sputtering of B-N chains, and that at high temperatures these chains can migrate from one defect corner to another. We complement the experiments with first-principles calculation which consider the thermal equilibrium formation energy of different defect configurations. It is shown that, below a critical defect size, hexagonal defects have the lowest formation energy and therefore are the more-stable configuration, and triangular defects are energetically metastable but can be "frozen in" under experimental conditions. We also discuss the possible contributions of several dynamic processes to the temperature-dependent defect formation.

6.
Sci Rep ; 7(1): 15096, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118413

RESUMEN

We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through an h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA