Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 40(6): 989-1001, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24909886

RESUMEN

Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanisms are largely unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists increased inflammation. Similarly, AhR signaling via the endogenous ligand FICZ reduced the inflammatory response in the imiquimod-induced model of skin inflammation and AhR-deficient mice exhibited a substantial exacerbation of the disease, compared to AhR-sufficient controls. Nonhematopoietic cells, in particular keratinocytes, were responsible for this hyperinflammatory response, which involved upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Inflamación/inmunología , Psoriasis/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Adyuvantes Inmunológicos/farmacología , Aminoquinolinas/farmacología , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Compuestos Azo/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carbazoles/farmacología , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1B1 , Citocinas/farmacología , Exposición a Riesgos Ambientales , Humanos , Imiquimod , Queratinocitos/inmunología , Ratones , Ratones Noqueados , Psoriasis/patología , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/inmunología , Piel/inmunología , Piel/metabolismo , Factores de Transcripción/biosíntesis , Regulación hacia Arriba
2.
Cell ; 134(5): 843-53, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775316

RESUMEN

oskar mRNA localization to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Although this localization requires microtubules and the plus end-directed motor, kinesin, its mechanism is controversial and has been proposed to involve active transport to the posterior, diffusion and trapping, or exclusion from the anterior and lateral cortex. By following oskar mRNA particles in living oocytes, we show that the mRNA is actively transported along microtubules in all directions, with a slight bias toward the posterior. This bias is sufficient to localize the mRNA and is reversed in mago, barentsz, and Tropomyosin II mutants, which mislocalize the mRNA anteriorly. Since almost all transport is mediated by kinesin, oskar mRNA localizes by a biased random walk along a weakly polarized cytoskeleton. We also show that each component of the oskar mRNA complex plays a distinct role in particle formation and transport.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/química , ARN Mensajero/análisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/análisis , Ribonucleoproteínas/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
3.
PLoS Comput Biol ; 14(8): e1006077, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157169

RESUMEN

The precise anatomical location of gene expression is an essential component of the study of gene function. For most model organisms this task is usually undertaken via visual inspection of gene expression images by interested researchers. Computational analysis of gene expression has been developed in several model organisms, notably in Drosophila which exhibits a uniform shape and outline in the early stages of development. Here we address the challenge of computational analysis of gene expression in Xenopus, where the range of developmental stages of interest encompasses a wide range of embryo size and shape. Embryos may have different orientation across images, and, in addition, embryos have a pigmented epidermis that can mask or confuse underlying gene expression. Here we report the development of a set of computational tools capable of processing large image sets with variable characteristics. These tools efficiently separate the Xenopus embryo from the background, separately identify both histochemically stained and naturally pigmented regions within the embryo, and can sort images from the same gene and developmental stage according to similarity of gene expression patterns without information about relative orientation. We tested these methods on a large, but highly redundant, collection of 33,289 in situ hybridization images, allowing us to select representative images of expression patterns at different embryo orientations. This has allowed us to put a much smaller subset of these images into the public domain in an effective manner. The 'isimage' module and the scripts developed are implemented in Python and freely available on https://pypi.python.org/pypi/isimage/.


Asunto(s)
Biología Computacional/métodos , Curaduría de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Embrión no Mamífero/metabolismo , Expresión Génica , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ/métodos , Hibridación Fluorescente in Situ/métodos , Programas Informáticos , Transcriptoma , Xenopus laevis/embriología
4.
Dev Biol ; 426(2): 409-417, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27475627

RESUMEN

Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.


Asunto(s)
Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/biosíntesis , Proteínas de Xenopus/biosíntesis , Xenopus/metabolismo , Animales , Secuencia de Bases , Embrión no Mamífero/metabolismo , Humanos , Ratones , Especificidad de la Especie , Factores de Transcripción/genética , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
5.
Dev Biol ; 426(2): 401-408, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27418388

RESUMEN

Advances in RNA sequencing technologies have led to the surprising discovery that a vast number of transcripts emanate from regions of the genome that are not part of coding genes. Although some of the smaller ncRNAs such as microRNAs have well-characterized functions, the majority of long ncRNA (lncRNA) functions remain poorly understood. Understanding the significance of lncRNAs is an important challenge facing biology today. A powerful approach to uncovering the function of lncRNAs is to explore temporal and spatial expression profiling. This may be particularly useful for classes of lncRNAs that have developmentally important roles as the expression of such lncRNAs will be expected to be both spatially and temporally regulated during development. Here, we take advantage of our ultra-high frequency (temporal) sampling of Xenopus embryos to analyze gene expression trajectories of lncRNA transcripts over the first 3 days of development. We computationally identify 5689 potential single- and multi-exon lncRNAs. These lncRNAs demonstrate clear dynamic expression patterns. A subset of them displays highly correlative temporal expression profiles with respect to those of the neighboring genes. We also identified spatially localized lncRNAs in the gastrula stage embryo. These results suggest that lncRNAs have regulatory roles during early embryonic development.


Asunto(s)
ARN Largo no Codificante/genética , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Exones/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/aislamiento & purificación , Transcriptoma , Xenopus/embriología
6.
Development ; 141(9): 1927-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24757007

RESUMEN

The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.


Asunto(s)
Blástula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Xenopus/embriología , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Poli A/metabolismo , Poliadenilación/genética , Estabilidad del ARN/genética , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Pez Cebra/genética
7.
Dev Biol ; 408(2): 252-68, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26100918

RESUMEN

Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos.


Asunto(s)
Blastómeros/metabolismo , Xenopus/embriología , Xenopus/genética , Animales , Tipificación del Cuerpo/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Modelos Animales , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética
8.
Dev Biol ; 404(2): 149-63, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26025923

RESUMEN

Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.


Asunto(s)
Ciona intestinalis/genética , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad , Algoritmos , Animales , Secuencia de Bases , Evolución Biológica , Evolución Molecular , Perfilación de la Expresión Génica , Humanos , Familia de Multigenes/genética , Sistemas de Lectura Abierta/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
Dev Biol ; 408(2): 345-57, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26391338

RESUMEN

Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.


Asunto(s)
Sistemas de Lectura Abierta , Xenopus/genética , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Bases de Datos Genéticas , Enfermedad/genética , Genómica , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Proteínas de Xenopus/genética , Xenopus laevis/genética
10.
Mol Cell ; 31(1): 79-90, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18571451

RESUMEN

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas , Caenorhabditis elegans/genética , Proteínas de Drosophila , Femenino , Silenciador del Gen , Genes de Helminto , Células Germinativas/crecimiento & desarrollo , Masculino , Proteínas/genética , ARN de Helminto/metabolismo , Complejo Silenciador Inducido por ARN , Transposasas/metabolismo
11.
Cytogenet Genome Res ; 145(3-4): 187-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871511

RESUMEN

Xenopus laevis (XLA) is an allotetraploid species which appears to have undergone whole-genome duplication after the interspecific hybridization of 2 diploid species closely related to Silurana/Xenopus tropicalis (XTR). Previous cDNA fluorescence in situ hybridization (FISH) experiments have identified 9 sets of homoeologous chromosomes in X. laevis, in which 8 sets correspond to chromosomes 1-8 of X. tropicalis (XTR1-XTR8), and the last set corresponds to a fusion of XTR9 and XTR10. In addition, recent X. laevis genome sequencing and BAC-FISH experiments support this physiological relationship and show no gross chromosome translocation in the X. laevis karyotype. Therefore, for the benefit of both comparative cytogenetics and genome research, we here propose a new chromosome nomenclature for X. laevis based on the phylogenetic relationship and chromosome length, i.e. XLA1L, XLA1S, XLA2L, XLA2S, and so on, in which the numbering of XLA chromosomes corresponds to that in X. tropicalis and the postfixes 'L' and 'S' stand for 'long' and 'short' chromosomes in the homoeologous pairs, which can be distinguished cytologically by their relative size. The last chromosome set is named XLA9L and XLA9S, in which XLA9 corresponds to both XTR9 and XTR10, and hence, to emphasize the phylogenetic relationship to X. tropicalis, XLA9_10L and XLA9_10S are also used as synonyms.


Asunto(s)
Cromosomas/clasificación , Terminología como Asunto , Xenopus laevis/genética , Animales , Bandeo Cromosómico , Cromosomas/genética , Cromosomas/ultraestructura , Femenino , Hibridación Genética/genética , Hibridación Fluorescente in Situ , Metafase , Filogenia , Especificidad de la Especie , Tetraploidía , Xenopus/clasificación , Xenopus laevis/clasificación
13.
BMC Genomics ; 14: 357, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714049

RESUMEN

BACKGROUND: Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. RESULTS: We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. CONCLUSION: We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds.


Asunto(s)
Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Rayos Láser , Microdisección , Análisis de Secuencia de ADN/métodos , Animales , Mapeo Cromosómico , Genómica , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico , Xenopus/genética
14.
Genome Res ; 20(10): 1459-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20647237

RESUMEN

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.


Asunto(s)
Bases de Datos Factuales , Biología Evolutiva/métodos , Regulación del Desarrollo de la Expresión Génica , Procesamiento de Imagen Asistido por Computador/métodos , Internet , Urocordados , Animales , Cordados/embriología , Cordados/genética , Cordados/crecimiento & desarrollo , Biología Computacional/métodos , Urocordados/embriología , Urocordados/genética , Urocordados/crecimiento & desarrollo
15.
Genesis ; 50(3): 143-54, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22344767

RESUMEN

The Xenopus community has made concerted efforts over the last 10-12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this.


Asunto(s)
Modelos Genéticos , Transcriptoma , Proteínas de Xenopus/genética , Xenopus/genética , Animales , Clonación Molecular , ADN Complementario/química , Etiquetas de Secuencia Expresada , Genoma , ARN Mensajero/química , Análisis de Secuencia , Xenopus laevis/genética
16.
BMC Genomics ; 13: 649, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171430

RESUMEN

BACKGROUND: Exome sequencing has transformed human genetic analysis and may do the same for other vertebrate model systems. However, a major challenge is sifting through the large number of sequence variants to identify the causative mutation for a given phenotype. In models like Xenopus tropicalis, an incomplete and occasionally incorrect genome assembly compounds this problem. To facilitate cloning of X. tropicalis mutants identified in forward genetic screens, we sought to combine bulk segregant analysis and exome sequencing into a single step. RESULTS: Here we report the first use of exon capture sequencing to identify mutations in a non-mammalian, vertebrate model. We demonstrate that bulk segregant analysis coupled with exon capture sequencing is not only able to identify causative mutations but can also generate linkage information, facilitate the assembly of scaffolds, identify misassembles, and discover thousands of SNPs for fine mapping. CONCLUSION: Exon capture sequencing and bulk segregant analysis is a rapid, inexpensive method to clone mutants identified in forward genetic screens. With sufficient meioses, this method can be generalized to any model system with a genome assembly, polished or unpolished, and in the latter case, it also provides many critical genomic resources.


Asunto(s)
Exoma , Exones , Mutación , Polimorfismo de Nucleótido Simple , Proteínas de Xenopus/genética , Xenopus/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Células Clonales , Ligamiento Genético , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Meiosis/genética , Datos de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN
17.
Genome Res ; 19(10): 1766-75, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19628731

RESUMEN

Small regulatory RNAs have recently emerged as key regulators of eukaryotic gene expression. Here we used high-throughput sequencing to determine small RNA populations in the germline and soma of the African clawed frog Xenopus tropicalis. We identified a number of miRNAs that were expressed in the female germline. miRNA expression profiling revealed that miR-202-5p is an oocyte-enriched miRNA. We identified two novel miRNAs that were expressed in the soma. In addition, we sequenced large numbers of Piwi-associated RNAs (piRNAs) and other endogenous small RNAs, likely representing endogenous siRNAs (endo-siRNAs). Of these, only piRNAs were restricted to the germline, suggesting that endo-siRNAs are an abundant class of small RNAs in the vertebrate soma. In the germline, both endogenous small RNAs and piRNAs mapped to many high copy number loci. Furthermore, endogenous small RNAs mapped to the same specific subsets of repetitive elements in both the soma and the germline, suggesting that these RNAs might act to silence repetitive elements in both compartments. Data presented here suggest a conserved role for miRNAs in the vertebrate germline. Furthermore, this study provides a basis for the functional analysis of small regulatory RNAs in an important vertebrate model system.


Asunto(s)
MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Nuclear Pequeño/genética , Xenopus/genética , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , MicroARNs/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/metabolismo , Transducción de Señal/genética , Vertebrados/genética , Vertebrados/metabolismo , Xenopus/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(10): 3829-34, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19225104

RESUMEN

Using chromatin immunoprecipitation combined with genomic microarrays we have identified targets of No tail (Ntl), a zebrafish Brachyury ortholog that plays a central role in mesoderm formation. We show that Ntl regulates a downstream network of other transcription factors and identify an in vivo Ntl binding site that resembles the consensus T-box binding site (TBS) previously identified by in vitro studies. We show that the notochord-expressed gene floating head (flh) is a direct transcriptional target of Ntl and that a combination of TBSs in the flh upstream region are required for Ntl-directed expression. Using our genome-scale data we have assembled a preliminary gene regulatory network that begins to describe mesoderm formation and patterning in the early zebrafish embryo.


Asunto(s)
Proteínas Fetales/metabolismo , Redes Reguladoras de Genes , Mesodermo/embriología , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Sitios de Unión , Tipificación del Cuerpo/genética , Linaje de la Célula , Secuencia Conservada , Proteínas Fetales/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Músculos/citología , Unión Proteica , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
BMC Dev Biol ; 11: 70, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22085734

RESUMEN

BACKGROUND: The molecular mechanisms governing vertebrate appendage regeneration remain poorly understood. Uncovering these mechanisms may lead to novel therapies aimed at alleviating human disfigurement and visible loss of function following injury. Here, we explore tadpole tail regeneration in Xenopus tropicalis, a diploid frog with a sequenced genome. RESULTS: We found that, like the traditionally used Xenopus laevis, the Xenopus tropicalis tadpole has the capacity to regenerate its tail following amputation, including its spinal cord, muscle, and major blood vessels. We examined gene expression using the Xenopus tropicalis Affymetrix genome array during three phases of regeneration, uncovering more than 1,000 genes that are significantly modulated during tail regeneration. Target validation, using RT-qPCR followed by gene ontology (GO) analysis, revealed a dynamic regulation of genes involved in the inflammatory response, intracellular metabolism, and energy regulation. Meta-analyses of the array data and validation by RT-qPCR and in situ hybridization uncovered a subset of genes upregulated during the early and intermediate phases of regeneration that are involved in the generation of NADP/H, suggesting that these pathways may be important for proper tail regeneration. CONCLUSIONS: The Xenopus tropicalis tadpole is a powerful model to elucidate the genetic mechanisms of vertebrate appendage regeneration. We have produced a novel and substantial microarray data set examining gene expression during vertebrate appendage regeneration.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Larva/fisiología , Xenopus/fisiología , Animales , Larva/genética , NADP/genética , Regeneración , Cola (estructura animal)/fisiología , Xenopus/genética
20.
EMBO Rep ; 9(7): 683-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18535625

RESUMEN

The zebrafish u-boot (ubo) gene encodes the transcription factor Prdm1, which is essential for the specification of the primary slow-twitch muscle fibres that derive from adaxial cells. Here, we show that Prdm1 functions by acting as a transcriptional repressor and that slow-twitch-specific muscle gene expression is activated by Prdm1-mediated repression of the transcriptional repressor Sox6. Genes encoding fast-specific isoforms of sarcomeric proteins are ectopically expressed in the adaxial cells of ubo(tp39) mutant embryos. By using chromatin immunoprecipitation, we show that these are direct targets of Prdm1. Thus, Prdm1 promotes slow-twitch fibre differentiation by acting as a global repressor of fast-fibre-specific genes, as well as by abrogating the repression of slow-fibre-specific genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Sitios de Unión , Miosinas Cardíacas/genética , Diferenciación Celular , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares Esqueléticas/citología , Fibras Musculares de Contracción Lenta/citología , Mutación/genética , Cadenas Ligeras de Miosina/genética , Especificidad de Órganos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA