Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(34): 6010-6020, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37369585

RESUMEN

Adult twin neuroimaging studies have revealed that cortical thickness (CT) and surface area (SA) are differentially influenced by genetic information, leading to their spatially distinct genetic patterning and topography. However, the postnatal origins of the genetic topography of CT and SA remain unclear, given the dramatic cortical development from neonates to adults. To fill this critical gap, this study unprecedentedly explored how genetic information differentially regulates the spatial topography of CT and SA in the neonatal brain by leveraging brain magnetic resonance (MR) images from 202 twin neonates with minimal influence by the complicated postnatal environmental factors. We capitalized on infant-dedicated computational tools and a data-driven spectral clustering method to parcellate the cerebral cortex into a set of distinct regions purely according to the genetic correlation of cortical vertices in terms of CT and SA, respectively, and accordingly created the first genetically informed cortical parcellation maps of neonatal brains. Both genetic parcellation maps exhibit bilaterally symmetric and hierarchical patterns, but distinct spatial layouts. For CT, regions with closer genetic relationships demonstrate an anterior-posterior (A-P) division, while for SA, regions with greater genetic proximity are typically within the same lobe. Certain genetically informed regions exhibit strong similarities between neonates and adults, with the most striking similarities in the medial surface in terms of SA, despite their overall substantial differences in genetic parcellation maps. These results greatly advance our understanding of the development of genetic influences on the spatial patterning of cortical morphology.SIGNIFICANCE STATEMENT Genetic influences on cortical thickness (CT) and surface area (SA) are complex and could evolve throughout the lifespan. However, studies revealing distinct genetic topography of CT and SA have been limited to adults. Using brain structural magnetic resonance (MR) images of twins, we unprecedentedly discovered the distinct genetically-informed parcellation maps of CT and SA in neonatal brains, respectively. Each genetic parcellation map comprises a distinct spatial layout of cortical regions, where vertices within the same region share high genetic correlation. These genetic parcellation maps of CT and SA of neonates largely differ from those of adults, despite their highly remarkable similarities in the medial cortex of SA. These discoveries provide important insights into the genetic organization of the early cerebral cortex development.


Asunto(s)
Encéfalo , Corteza Cerebral , Humanos , Adulto , Lactante , Recién Nacido , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Gemelos/genética , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Mapeo Encefálico
2.
Biostatistics ; 24(2): 465-480, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-34418057

RESUMEN

Despite interest in the joint modeling of multiple functional responses such as diffusion properties in neuroimaging, robust statistical methods appropriate for this task are lacking. To address this need, we propose a varying coefficient quantile regression model able to handle bivariate functional responses. Our work supports innovative insights into biomedical data by modeling the joint distribution of functional variables over their domains and across clinical covariates. We propose an estimation procedure based on the alternating direction method of multipliers and propagation separation algorithms to estimate varying coefficients using a B-spline basis and an $L_2$ smoothness penalty that encourages interpretability. A simulation study and an application to a real-world neurodevelopmental data set demonstrates the performance of our model and the insights provided by modeling functional fractional anisotropy and mean diffusivity jointly and their association with gestational age and sex.


Asunto(s)
Algoritmos , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Simulación por Computador , Neuroimagen
3.
Cereb Cortex ; 33(19): 10367-10379, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37585708

RESUMEN

Prior work has shown that different functional brain networks exhibit different maturation rates, but little is known about whether and how different brain areas may differ in the exact shape of longitudinal functional connectivity growth trajectories during infancy. We used resting-state functional magnetic resonance imaging (fMRI) during natural sleep to characterize developmental trajectories of different regions using a longitudinal cohort of infants at 3 weeks (neonate), 1 year, and 2 years of age (n = 90; all with usable data at three time points). A novel whole brain heatmap analysis was performed with four mixed-effect models to determine the best fit of age-related changes for each functional connection: (i) growth effects: positive-linear-age, (ii) emergent effects: positive-log-age, (iii) pruning effects: negative-quadratic-age, and (iv) transient effects: positive-quadratic-age. Our results revealed that emergent (logarithmic) effects dominated developmental trajectory patterns, but significant pruning and transient effects were also observed, particularly in connections centered on inferior frontal and anterior cingulate areas that support social learning and conflict monitoring. Overall, unique global distribution patterns were observed for each growth model indicating that developmental trajectories for different connections are heterogeneous. All models showed significant effects concentrated in association areas, highlighting the dominance of higher-order social/cognitive development during the first 2 years of life.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Recién Nacido , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Encéfalo , Cognición , Giro del Cíngulo , Conectoma/métodos
4.
Cereb Cortex ; 33(8): 4829-4843, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36190430

RESUMEN

Functional magnetic resonance imaging has been used to identify complex brain networks by examining the correlation of blood-oxygen-level-dependent signals between brain regions during the resting state. Many of the brain networks identified in adults are detectable at birth, but genetic and environmental influences governing connectivity within and between these networks in early infancy have yet to be explored. We investigated genetic influences on neonatal resting-state connectivity phenotypes by generating intraclass correlations and performing mixed effects modeling to estimate narrow-sense heritability on measures of within network and between-network connectivity in a large cohort of neonate twins. We also used backwards elimination regression and mixed linear modeling to identify specific demographic and medical history variables influencing within and between network connectivity in a large cohort of typically developing twins and singletons. Of the 36 connectivity phenotypes examined, only 6 showed narrow-sense heritability estimates greater than 0.10, with none being statistically significant. Demographic and obstetric history variables contributed to between- and within-network connectivity. Our results suggest that in early infancy, genetic factors minimally influence brain connectivity. However, specific demographic and medical history variables, such as gestational age at birth and maternal psychiatric history, may influence resting-state connectivity measures.


Asunto(s)
Mapeo Encefálico , Encéfalo , Embarazo , Femenino , Humanos , Encéfalo/diagnóstico por imagen , Fenotipo , Descanso , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
5.
Environ Res ; 259: 119467, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38942256

RESUMEN

INTRODUCTION: Existing evidence suggests that exposure to phthalates is higher among younger age groups. However, limited knowledge exists on how phthalate exposure, as well as exposure to replacement plasticizers, di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) and di-2-ethylhexyl terephthalate (DEHTP), change from infancy through early childhood. METHODS: Urine samples were collected across the first 5 years of life from typically developing infants and young children enrolled between 2017 and 2020 in the longitudinal UNC Baby Connectome Project. From 438 urine samples among 187 participants, we quantified concentrations of monobutyl phthalate (MnBP), mono-3-carboxypropyl phthalate (MCPP), monoisobutyl phthalate (MiBP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), and metabolites of di(2-ethylhexyl) phthalate (DEHP), diisonoyl phthalate (DiNP), DINCH and DEHTP. Specific gravity (SG) adjusted metabolite and molar sum concentrations were compared across age groups. Intraclass correlation coefficients (ICCs) were calculated among 122 participants with multiple urine specimens (373 samples). RESULTS: Most phthalate metabolites showed high detection frequencies (>80% of samples). Replacement plasticizers DINCH (58-60%) and DEHTP (>97%) were also commonly found. DiNP metabolites were less frequently detected (<10%). For some metabolites, SG-adjusted concentrations were inversely associated with age, with the highest concentrations found in the first year of life. ICCs revealed low to moderate reliability in metabolite measurements (ρ = 0.10-0.48) suggesting a high degree of within-individual variation in exposure among this age group. The first 6 months (compared to remaining age groups) showed an increased ratio of carboxylated metabolites of DEHP and DEHTP, compared to other common metabolites, but no clear age trends for DINCH metabolite ratios were observed. CONCLUSION: Metabolites of phthalates and replacements plasticizers were widely detected in infancy and early childhood, with the highest concentrations observed in the first year of life for several metabolites. Higher proportions of carboxylated metabolites of DEHP and DEHTP in younger age groups indicate potential differences in metabolism during infancy.

6.
Birth ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822631

RESUMEN

Effective communication in relation to pregnancy and birth is crucial to quality care. A recent focus in reproductive healthcare on "sexed language" reflects an ideology of unchangeable sex binary and fear of erasure, from both cisgender women and the profession of midwifery. In this paper, we highlight how privileging sexed language causes harm to all who birth-including pregnant trans, gender diverse, and non-binary people-and is, therefore, unethical and incompatible with the principles of midwifery. We show how this argument, which conflates midwifery with essentialist thinking, is unstable, and perpetuates and misappropriates midwifery's marginalized status. We also explore how sex and gender essentialism can be understood as colonialist, heteropatriarchal, and universalist, and therefore, reinforcing of these harmful principles. Midwifery has both the opportunity and duty to uphold reproductive justice. Midwifery can be a leader in the decolonization of childbirth and in defending the rights of all childbearing people, the majority of whom are cisgender women. As the systemwide use of inclusive language is central to this commitment, we offer guidance in relation to how inclusive language in perinatal and midwifery services may be realized.

7.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558239

RESUMEN

Tracing the early paths leading to developmental disorders is critical for prevention. In previous work, we detected an interaction between genomic risk scores for schizophrenia (GRSs) and early-life complications (ELCs), so that the liability of the disorder explained by genomic risk was higher in the presence of a history of ELCs, compared with its absence. This interaction was specifically driven by loci harboring genes highly expressed in placentae from normal and complicated pregnancies [G. Ursini et al., Nat. Med. 24, 792-801 (2018)]. Here, we analyze whether fractionated genomic risk scores for schizophrenia and other developmental disorders and traits, based on placental gene-expression loci (PlacGRSs), are linked with early neurodevelopmental outcomes in individuals with a history of ELCs. We found that schizophrenia's PlacGRSs are negatively associated with neonatal brain volume in singletons and offspring of multiple pregnancies and, in singletons, with cognitive development at 1 y and, less strongly, at 2 y, when cognitive scores become more sensitive to other factors. These negative associations are stronger in males, found only with GRSs fractionated by placental gene expression, and not found in PlacGRSs for other developmental disorders and traits. The relationship of PlacGRSs with brain volume persists as an anlage of placenta biology in adults with schizophrenia, again selectively in males. Higher placental genomic risk for schizophrenia, in the presence of ELCs and particularly in males, alters early brain growth and function, defining a potentially reversible neurodevelopmental path of risk that may be unique to schizophrenia.


Asunto(s)
Encéfalo/anatomía & histología , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Placenta/metabolismo , Esquizofrenia/genética , Transcriptoma , Encéfalo/fisiología , Cognición , Femenino , Sitios Genéticos , Humanos , Lactante , Recién Nacido , Masculino , Tamaño de los Órganos/genética , Embarazo
8.
J Nurs Scholarsh ; 56(1): 5-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37243377

RESUMEN

The visibility and discussion on the rights and needs of Trans and Non-Binary communities in relation to healthcare have seen growing prominence in recent years. Despite an overall improvement in access to legal protections, civil rights, and in many jurisdictions specialist provision of healthcare for gender minorities, there remain poorer health outcomes in many areas and ongoing experiences of discrimination and transphobia. In this article, we set out the prerogative for nurses to step up as authentic allies for Trans and Non Binary people and put forward strategies to enhance the experience of gender minorities in healthcare through practice, education, and systems change.


Asunto(s)
Minorías Sexuales y de Género , Humanos , Atención a la Salud , Identidad de Género
9.
Nurs Crit Care ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380778

RESUMEN

There is more discussion than ever surrounding the health and care needs of Transgender communities. However, there is limited research on the care of Transgender patients in the Intensive Care Unit which can contribute to knowledge gaps, inconsistencies and uncertainties surrounding health care practices. This article is not intended to address all of the specific needs of Transgender patients in ICU, but to explore the ethical considerations for caring for a Transgender woman in the ICU. In doing so, this article will explore some specific considerations around gender affirming care, challenging discrimination, physiological changes, and systems change to enhance care.

10.
Nat Rev Neurosci ; 19(3): 123-137, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29449712

RESUMEN

In humans, the period from term birth to ∼2 years of age is characterized by rapid and dynamic brain development and plays an important role in cognitive development and risk of disorders such as autism and schizophrenia. Recent imaging studies have begun to delineate the growth trajectories of brain structure and function in the first years after birth and their relationship to cognition and risk of neuropsychiatric disorders. This Review discusses the development of grey and white matter and structural and functional networks, as well as genetic and environmental influences on early-childhood brain development. We also discuss initial evidence regarding the usefulness of early imaging biomarkers for predicting cognitive outcomes and risk of neuropsychiatric disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Cognición/fisiología , Biomarcadores , Encéfalo/anatomía & histología , Desarrollo Infantil , Interacción Gen-Ambiente , Sustancia Gris/anatomía & histología , Sustancia Gris/crecimiento & desarrollo , Humanos , Lactante , Recién Nacido , Trastornos Mentales/genética , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Neuroimagen , Factores de Riesgo , Sustancia Blanca/anatomía & histología , Sustancia Blanca/crecimiento & desarrollo
11.
Bioorg Med Chem Lett ; 91: 129373, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315697

RESUMEN

Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.


Asunto(s)
Piridinas , TYK2 Quinasa , Ratones , Animales , Relación Estructura-Actividad , Piridinas/farmacología
12.
Cereb Cortex ; 32(15): 3175-3186, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34849641

RESUMEN

Mother and infant neural and behavioral synchrony is important for infant development during the first years of life. Recent studies also suggest that neural risk markers associated with parental psychopathology may be transmitted across generations before symptoms emerge in offspring. There is limited understanding of how early similarity in brain functioning between 2 generations emerges. In the current study, using functional magnetic resonance imaging, we examined the functional connectivity (FC) similarity between mothers and newborns during the first 3 months after the infant's birth. We found that FC similarity between mothers and infants increased as infant age increased. Furthermore, we examined whether maternal factors such as maternal socioeconomic status and prenatal maternal depressive symptoms may influence individual differences in FC similarity. For the whole-brain level, lower maternal education levels were associated with greater FC similarity. In previous literature, lower maternal education levels were associated with suboptimal cognitive and socioemotional development. Greater FC similarity may reflect that the infants develop their FC similarity prematurely, which may suboptimally influence their developmental outcomes in later ages.


Asunto(s)
Desarrollo Infantil , Madres , Niño , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Relaciones Madre-Hijo , Madres/psicología , Neuroimagen , Embarazo
13.
Cereb Cortex ; 32(2): 367-379, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34231837

RESUMEN

Genetic influences on cortical thickness (CT) and surface area (SA) are known to vary across the life span. Little is known about the extent to which genetic factors influence CT and SA in infancy and toddlerhood. We performed the first longitudinal assessment of genetic influences on variation in CT and SA in 501 twins who were aged 0-2 years. We observed substantial additive genetic influences on both average CT (0.48 in neonates, 0.37 in 1-year-olds, and 0.44 in 2-year-olds) and total SA (0.59 in neonates, 0.74 in 1-year-olds, and 0.73 in 2-year-olds). In addition, we found strong heritability of the change in average CT (0.49) from neonates to 1-year-olds, but not from 1- to 2-year-olds. Moreover, we found strong genetic correlations for average CT (rG = 0.92) between 1- and 2-year-olds and strong genetic correlations for total SA across all timepoints (rG = 0.96 between neonates and 1-year-olds, rG = 1 between 1- and 2-year-olds). In addition, we found CT and SA are strongly genetic correlated at birth, but weaken over time. Overall, results suggest a dynamic genetic relationship between CT and SA during first 2 years of life and provide novel insights into how genetic influences shape the cortical structure during early brain development.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Preescolar , Humanos , Lactante , Recién Nacido , Longevidad , Gemelos/genética
14.
Cereb Cortex ; 32(15): 3206-3223, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34952542

RESUMEN

Sex differences in the human brain emerge as early as mid-gestation and have been linked to sex hormones, particularly testosterone. Here, we analyzed the influence of markers of early sex hormone exposure (polygenic risk score (PRS) for testosterone, salivary testosterone, number of CAG repeats, digit ratios, and PRS for estradiol) on the growth pattern of cortical surface area in a longitudinal cohort of 722 infants. We found PRS for testosterone and right-hand digit ratio to be significantly associated with surface area, but only in females. PRS for testosterone at the most stringent P value threshold was positively associated with surface area development over time. Higher right-hand digit ratio, which is indicative of low prenatal testosterone levels, was negatively related to surface area in females. The current work suggests that variation in testosterone levels during both the prenatal and postnatal period may contribute to cortical surface area development in female infants.


Asunto(s)
Dedos , Hormonas Esteroides Gonadales , Estradiol/farmacología , Femenino , Humanos , Lactante , Masculino , Embarazo , Caracteres Sexuales , Testosterona
15.
J Pediatr Nurs ; 72: 26-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37037102

RESUMEN

PURPOSE: The purpose of this study was to investigate if social adversity is associated with mother reported emotional dysregulation behaviors and trajectories during infancy and early childhood. DESIGN & METHODS: A secondary data analysis from the Durham Child Health and Development study study included 206 child-mother dyads. Three models were used to explore the relationship between social adversity and mother reported emotional dysregulation during infancy (Infant Behavior Questionnaire-Revised) and early childhood (Child Behavior Checklist - Dysregulation Profile). Linear mixed effects models were adopted to investigate if social adversity was associated with mother reported emotional dysregulation longitudinally. Regression analysis was conducted to explore if social adversity was associated with maternal reported emotional dysregulation trajectory slope scores and maternal reported emotional dysregulation trajectory class. Maternal psychological distress and the child's sex assigned at birth were included as covariates in each analysis. RESULTS: Infants with greater social adversity scores had significantly higher maternal reported fear responses across the first year of life. Social adversity was associated with maternal reported distress to limitations trajectory, dysregulated recovery class, and dysregulated distress to limitations class. During early childhood social adversity was significantly associated with maternal reported emotional dysregulation but not trajectories which showed little variability. CONCLUSION & PRACTICAL IMPLICATIONS: Our results indicate that social adversity is associated with maternal reported emotional dysregulation during infancy and early childhood. Nursing and other professionals can participate in early screening to determine risk and provide intervention.


Asunto(s)
Regulación Emocional , Emociones , Determinantes Sociales de la Salud , Preescolar , Humanos , Lactante , Recién Nacido , Madres
16.
Cereb Cortex ; 31(1): 301-311, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946557

RESUMEN

The presence of heterogeneity/subgroups in infants and older populations against single-domain brain or behavioral measures has been previously characterized. However, few attempts have been made to explore heterogeneity at the brain-behavior relationship level. Such a hypothesis posits that different subgroups of infants may possess qualitatively different brain-behavior relationships that could ultimately contribute to divergent developmental outcomes even with relatively similar brain phenotypes. In this study, we aimed to explore such relationship-level heterogeneity and delineate the subgrouping structure of newborns with differential brain-behavior associations based on a typically developing sample of 81 infants with 3-week resting-state functional magnetic resonance imaging scans and 4-year intelligence quotient (IQ) measures. Our results not only confirmed the existence of relationship-level heterogeneity in newborns but also revealed divergent developmental outcomes associated with two subgroups showing similar brain functional connectivity but contrasting brain-behavior relationships. Importantly, further analyses unveiled an intriguing pattern that the subgroup with higher 4-year IQ outcomes possessed brain-behavior relationships that were congruent to their functional connectivity pattern in neonates while the subgroup with lower 4-year IQ not, providing potential explanations for the observed IQ differences. The characterization of heterogeneity at the brain-behavior relationship level may not only improve our understanding of the patterned intersubject variability during infancy but could also pave the way for future development of heterogeneity-inspired, personalized, subgroup-specific models for better prediction.


Asunto(s)
Conducta/fisiología , Encéfalo/crecimiento & desarrollo , Cognición/fisiología , Vías Nerviosas/crecimiento & desarrollo , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Lactante , Recién Nacido , Pruebas de Inteligencia , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiología
17.
Anal Chem ; 93(27): 9373-9382, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34191499

RESUMEN

Rapid identification and quantification of opioid drugs are of significant importance and an urgent need in drug regulation and control, considering the serious social and economic impact of the opioid epidemic in the United States. Unfortunately, techniques for accurate detection of these opioids, particularly for fentanyl, an extremely potent synthetic drug of abuse and a main perpetrator in the opioid crisis, are often not readily accessible. Therefore, a fast, highly sensitive, and preferably quantitative technique, with excellent portability, is highly desirable. Such a technique can potentially offer timely and crucial information for drug control officials, as well as health professionals, about drug distribution and overdose prevention. We therefore propose a portable surface-enhanced Raman scattering (SERS) approach by pairing an easy to perform yet reliable SERS protocol with a compact Raman module suitable for rapid, on-site identification and quantification of trace fentanyl. Fentanyl spiked in urine control was successfully detected at concentrations as low as 5 ng/mL. Portable SERS also enabled detection of trace fentanyl laced in recreational drugs at mass concentrations as low as 0.05% (5 ng in 10 µg total) and 0.1% (10 ng in 10 µg total) in heroin and tetrahydrocannabinol (THC), respectively. Drug interaction with the nanoparticle surface was simulated through molecular dynamics to investigate the molecular adsorption mechanism and account for SERS signal differences observed for opioid drugs. Furthermore, resolution of fentanyl in binary and ternary opioid mixtures was readily achieved with multivariate data analysis. In sum, we developed a rapid, highly sensitive, and reliably quantitative method for trace fentanyl analysis by synergizing a streamlined SERS procedure and a portable Raman module at low cost.


Asunto(s)
Fentanilo , Drogas Ilícitas , Analgésicos Opioides , Heroína , Límite de Detección , Espectrometría Raman , Estados Unidos
18.
Radiology ; 298(1): 173-179, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107801

RESUMEN

Background Subdural hemorrhage (SDH) is thought to have a benign course in asymptomatic neonates. However, effects on neurodevelopmental outcomes have not been established. Purpose To evaluate neurodevelopmental outcomes, gray matter volumes, and MRI findings in asymptomatic neonates with SDH compared with control neonates. Materials and Methods This retrospective analysis was conducted between 2003 and 2016 and was based on data from the University of North Carolina Early Brain Development Study. Neurodevelopmental outcomes were evaluated at 2 years of age by using the Mullen Scales of Early Learning (MSEL). All infants were imaged with 3.0-T MRI machines and were evaluated for SDH at baseline (neonates) and at ages 1 and 2 years. Volumetric MRI for brain segmentation was performed at ages 1 and 2 years. A secondary analysis was performed in neonates matched 1:1 with control neonates. Differences in categorical variables were measured by using the Fisher exact test, and the t test was used for continuous variables. Results A total of 311 neonates (mean gestational age ± standard deviation, 39.3 weeks ± 1.5), including 57 with SDH (mean gestational age, 39.5 weeks ± 1.2), were evaluated. The subgroup included 55 neonates with SDH (mean gestational age, 39.6 weeks ± 1.2) and 55 matched control neonates (mean gestational age, 39.7 weeks ± 1.2). Fifty-five of 57 neonates with SDH (97%; 95% CI: 92, 100) were delivered vaginally compared with 157 of 254 control neonates (62%, 95% CI: 56, 68; P < .001). Otherwise, there were no differences in perinatal, maternal, or obstetric parameters. There were no differences in composite MSEL scores (115 ± 15 and 109 ± 16 at 2 years, respectively; P = .05) or gray matter volumes between the neonatal SDH group and control neonates (730 cm3 ± 85 and 742 cm3 ± 76 at 2 years, respectively; P = .70). There was no evidence of rebleeding at follow-up MRI. Conclusion Neurodevelopmental scores and gray matter volumes at age 2 years did not differ between asymptomatic neonates with subdural hemorrhage and control neonates. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Sustancia Gris/anatomía & histología , Hematoma Subdural/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Masculino , Tamaño de los Órganos , Estudios Retrospectivos
19.
Cereb Cortex ; 30(12): 6152-6168, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32591808

RESUMEN

Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Desarrollo Infantil/fisiología , Sustancia Blanca/crecimiento & desarrollo , Niño , Preescolar , Imagen de Difusión Tensora , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Vías Nerviosas/crecimiento & desarrollo
20.
Cereb Cortex ; 30(2): 786-800, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31365070

RESUMEN

Cortical structure has been consistently related to cognitive abilities in children and adults, yet we know little about how the cortex develops to support emergent cognition in infancy and toddlerhood when cortical thickness (CT) and surface area (SA) are maturing rapidly. In this report, we assessed how regional and global measures of CT and SA in a sample (N = 487) of healthy neonates, 1-year-olds, and 2-year-olds related to motor, language, visual reception, and general cognitive ability. We report novel findings that thicker cortices at ages 1 and 2 and larger SA at birth, age 1, and age 2 confer a cognitive advantage in infancy and toddlerhood. While several expected brain-cognition relationships were observed, overlapping cortical regions were also implicated across cognitive domains, suggesting that infancy marks a period of plasticity and refinement in cortical structure to support burgeoning motor, language, and cognitive abilities. CT may be a particularly important morphological indicator of ability, but its impact on cognition is relatively weak when compared with gestational age and maternal education. Findings suggest that prenatal and early postnatal cortical developments are important for cognition in infants and toddlers but should be considered in relation to other child and demographic factors.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Infantil , Cognición/fisiología , Corteza Cerebral/diagnóstico por imagen , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA