Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7905, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036566

RESUMEN

Excessive neural variability of sensory responses is a hallmark of atypical sensory processing in autistic individuals with cascading effects on other core autism symptoms but unknown neurobiological substrate. Here, by recording neocortical single neuron activity in a well-established mouse model of Fragile X syndrome and autism, we characterized atypical sensory processing and probed the role of endogenous noise sources in exaggerated response variability in males. The analysis of sensory stimulus evoked activity and spontaneous dynamics, as well as neuronal features, reveals a complex cellular and network phenotype. Neocortical sensory information processing is more variable and temporally imprecise. Increased trial-by-trial and inter-neuronal response variability is strongly related to key endogenous noise features, and may give rise to behavioural sensory responsiveness variability in autism. We provide a novel preclinical framework for understanding the sources of endogenous noise and its contribution to core autism symptoms, and for testing the functional consequences for mechanism-based manipulation of noise.


Asunto(s)
Trastorno Autístico , Síndrome del Cromosoma X Frágil , Neocórtex , Masculino , Ratones , Animales , Neuronas , Síndrome del Cromosoma X Frágil/genética , Sensación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Modelos Animales de Enfermedad , Ratones Noqueados
2.
J Physiol ; 587(Pt 4): 787-804, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19103683

RESUMEN

Fragile X syndrome is one of the most common forms of mental retardation, yet little is known about the physiological mechanisms causing the disease. In this study, we probed the ionotropic glutamate receptor content in synapses of hippocampal CA1 pyramidal neurons in a mouse model for fragile X (Fmr1 KO2). We found that Fmr1 KO2 mice display a significantly lower AMPA to NMDA ratio than wild-type mice at 2 weeks of postnatal development but not at 6-7 weeks of age. This ratio difference at 2 weeks postnatally is caused by down-regulation of the AMPA and up-regulation of the NMDA receptor components. In correlation with these changes, the induction of NMDA receptor-dependent long-term potentiation following a low-frequency pairing protocol is increased in Fmr1 KO2 mice at this developmental stage but not later in maturation. We propose that ionotropic glutamate receptors, as well as potentiation, are altered at a critical time point for hippocampal network development, causing long-term changes. Associated learning and memory deficits would contribute to the fragile X mental retardation phenotype.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica/genética , Plasticidad Neuronal/genética , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/biosíntesis , Hipocampo/metabolismo , Hipocampo/patología , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/genética , Sinapsis/patología
3.
Neuropsychopharmacology ; 43(3): 492-502, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28722023

RESUMEN

In fragile X syndrome (FXS), sensory hypersensitivity and impaired habituation is thought to result in attention overload and various behavioral abnormalities in reaction to the excessive and remanent salience of environment features that would normally be ignored. This phenomenon, termed sensory defensiveness, has been proposed as the potential cause of hyperactivity, hyperarousal, and negative reactions to changes in routine that are often deleterious for FXS patients. However, the lack of tools for manipulating sensory hypersensitivity has not allowed the experimental testing required to evaluate the relevance of this hypothesis. Recent work has shown that BMS-204352, a BKCa channel agonist, was efficient to reverse cortical hyperexcitability and related sensory hypersensitivity in the Fmr1-KO mouse model of FXS. In the present study, we report that exposing Fmr1-KO mice to novel or unfamiliar environments resulted in multiple behavioral perturbations, such as hyperactivity, impaired nest building and excessive grooming of the back. Reversing sensory hypersensitivity with the BKCa channel agonist BMS-204352 prevented these behavioral abnormalities in Fmr1-KO mice. These results are in support of the sensory defensiveness hypothesis, and confirm BKCa as a potentially relevant molecular target for the development of drug medication against FXS/ASD.


Asunto(s)
Síndrome del Cromosoma X Frágil/fisiopatología , Aseo Animal/fisiología , Actividad Motora/fisiología , Comportamiento de Nidificación/fisiología , Animales , Ansiolíticos/farmacología , Diazepam/farmacología , Modelos Animales de Enfermedad , Ambiente , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Aseo Animal/efectos de los fármacos , Indoles/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Comportamiento de Nidificación/efectos de los fármacos , Neurotransmisores/farmacología , Psicotrópicos/farmacología , Reconocimiento en Psicología , Conducta Estereotipada/efectos de los fármacos , Conducta Estereotipada/fisiología
4.
Methods Mol Biol ; 1538: 321-340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27943199

RESUMEN

Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.


Asunto(s)
Conectoma/métodos , Neuronas/fisiología , Neuronas/virología , Virus de la Rabia/fisiología , Sinapsis/fisiología , Sinapsis/virología , Animales , Transporte Biológico , Encéfalo/fisiología , Biología Computacional/métodos , Bases de Datos Factuales , Espinas Dendríticas/metabolismo , Vectores Genéticos , Procesamiento de Imagen Asistido por Computador , Ratones , Neuronas/citología , Transfección , Navegador Web
5.
Autism Res ; 10(10): 1584-1596, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28590057

RESUMEN

Fragile X syndrome (FXS) is a developmental disorder caused by a mutation in the X-linked FMR1 gene, coding for the FMRP protein which is largely involved in synaptic function. FXS patients present several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and cognitive deficits. Autistic symptoms, e.g., altered social interaction and communication, are also often observed: FXS is indeed the most common monogenic cause of autism. Mouse models of FXS are therefore of great interest for research on both FXS and autistic pathologies. The Fmr1-KO2 mouse line is the most recent FXS model, widely used for brain studies; surprisingly, little is known about the face validity of this model, i.e., its FXS-like behavioral phenotype. Furthermore, no data are available for the age-related expression of the pathological phenotypes in this mouse line, a critical issue for modelling neurodevelopmental disorders. Here we performed an extensive behavioral characterization of the KO2 model at infancy, adolescent and adult ages. Hyperactivity, altered emotionality, sensory hyper-responsiveness and memory deficits were already present in KO mice at adolescence and remained evident at adulthood. Alterations in social behaviors were instead observed only in young KO animals: during the first 2 weeks of life, KOs emitted longer ultrasonic vocalizations compared to their WT littermates and as adolescents they displayed more aggressive behaviors towards a conspecific. These results strongly support the face validity of the KO2 mouse as a model for FXS, at the same time demonstrating that its ability to recapitulate social autistic-relevant phenotypes depends on early testing ages. Autism Res 2017, 10: 1584-1596. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Asunto(s)
Conducta Animal , Síndrome del Cromosoma X Frágil/psicología , Conducta Social , Animales , Modelos Animales de Enfermedad , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Noqueados
6.
Nat Commun ; 8(1): 1103, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29062097

RESUMEN

Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/psicología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Receptor del Glutamato Metabotropico 5/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética
7.
Sci Adv ; 1(10): e1500775, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702437

RESUMEN

Fragile X syndrome (FXS), the most common inherited form of intellectual disability disorder and a frequent cause of autism spectrum disorder (ASD), is characterized by a high prevalence of sensory symptoms. Perturbations in the anatomical connectivity of neocortical circuits resulting in their functional defects have been hypothesized to contribute to the underlying etiology of these disorders. We tested this idea by probing alterations in the functional and structural connectivity of both local and long-ranging neocortical circuits in the Fmr1 (-/y) mouse model of FXS. To achieve this, we combined in vivo ultrahigh-field diffusion tensor magnetic resonance imaging (MRI), functional MRI, and viral tracing approaches in adult mice. Our results show an anatomical hyperconnectivity phenotype for the primary visual cortex (V1), but a disproportional low connectivity of V1 with other neocortical regions. These structural data are supported by defects in the structural integrity of the subcortical white matter in the anterior and posterior forebrain. These anatomical alterations might contribute to the observed functional decoupling across neocortical regions. We therefore identify FXS as a "connectopathy," providing a translational model for understanding sensory processing defects and functional decoupling of neocortical areas in FXS and ASD.

8.
Brain Struct Funct ; 220(3): 1369-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24723034

RESUMEN

Glycoprotein-deleted rabies virus (RABV ∆G) is a powerful tool for the analysis of neural circuits. Here, we demonstrate the utility of an anterograde RABV ∆G variant for novel neuroanatomical approaches involving either bulk or sparse neuronal populations. This technology exploits the unique features of RABV ∆G vectors, namely autonomous, rapid high-level expression of transgenes, and limited cytotoxicity. Our vector permits the unambiguous long-range and fine-scale tracing of the entire axonal arbor of individual neurons throughout the brain. Notably, this level of labeling can be achieved following infection with a single viral particle. The vector is effective over a range of ages (>14 months) aiding the studies of neurodegenerative disorders or aging, and infects numerous cell types in all brain regions tested. Lastly, it can also be readily combined with retrograde RABV ∆G variants. Together with other modern technologies, this tool provides new possibilities for the investigation of the anatomy and physiology of neural circuits.


Asunto(s)
Encéfalo/citología , Vectores Genéticos/metabolismo , Imagenología Tridimensional/métodos , Neuronas/citología , Virus de la Rabia/genética , Coloración y Etiquetado/métodos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Transporte Axonal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Virus de la Rabia/metabolismo
9.
Breast Cancer Res ; 5(4): 192-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12817990

RESUMEN

The protective effect of an early full-term pregnancy is a well established phenomenon; in contrast, the molecular and cell-specific mechanisms that govern parity-specific changes in the mammary gland have not been well described. Recent studies signify a dramatic advance in our understanding of this phenomenon, and indicate a 'cell fate' model for parity-related changes that lead to protection against breast cancer.


Asunto(s)
Glándulas Mamarias Animales/patología , Complicaciones del Embarazo , Animales , Femenino , Expresión Génica , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/etiología , Neoplasias Mamarias Animales/genética , Ratones , Paridad , Embarazo , Ratas , Proteína p53 Supresora de Tumor/genética
10.
Nat Neurosci ; 17(12): 1701-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25383903

RESUMEN

Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation in Fmr1(-/y) mice. This correlated with neuronal and dendritic hyperexcitability of S1 pyramidal neurons, which affect all major aspects of neuronal computation, from the integration of synaptic input to the generation of action potential output. Using dendritic electrophysiological recordings, calcium imaging, pharmacology, biochemistry and a computer model, we found that this defect was, at least in part, attributable to the reduction and dysfunction of dendritic h- and BKCa channels. We pharmacologically rescued several core hyperexcitability phenomena by targeting BKCa channels. Our results provide strong evidence pointing to the utility of BKCa channel openers for the treatment of the sensory hypersensitivity aspects of FXS.


Asunto(s)
Potenciales de Acción/fisiología , Canalopatías/fisiopatología , Dendritas/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Neocórtex/fisiología , Animales , Canalopatías/genética , Dendritas/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/patología , Técnicas de Cultivo de Órganos , Reflejo de Sobresalto/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-23576958

RESUMEN

Most neuron types possess elaborate dendritic arbors that receive and integrate excitatory and inhibitory inputs from numerous other neurons to give rise to cell-type specific firing patterns. The computational properties of these dendrites are therefore crucial for neuronal information processing, and are strongly determined by the expression of many types of voltage-gated ion channels in their membrane. The dendritic distribution patterns of these ion channels are characteristic for each ion channel type, are dependent on the neuronal identity, and can be modified in a plastic or pathophysiological manner. We present a method that enables us to semi-automatically map and quantify in 3D the expression levels of specific ion channel types across the entire dendritic arbor. To achieve this, standard immunohistochemistry was combined with reconstruction and quantification procedures for the localization and relative distribution of ion channels with respect to dendritic morphology. This method can, in principle, be applied to any fluorescent signal, including fluorescently tagged membrane proteins, RNAs, or intracellular signaling molecules.


Asunto(s)
Dendritas/química , Dendritas/fisiología , Imagenología Tridimensional/métodos , Canales Iónicos/análisis , Canales Iónicos/fisiología , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Neocórtex/química , Neocórtex/citología , Neocórtex/fisiología , Embarazo
12.
Artículo en Inglés | MEDLINE | ID: mdl-23355811

RESUMEN

An understanding of how the brain processes information requires knowledge of the architecture of its underlying neuronal circuits, as well as insights into the relationship between architecture and physiological function. A range of sophisticated tools is needed to acquire this knowledge, and recombinant rabies virus (RABV) is becoming an increasingly important part of this essential toolbox. RABV has been recognized for years for its properties as a synapse-specific trans-neuronal tracer. A novel genetically modified variant now enables the investigation of specific monosynaptic connections. This technology, in combination with other genetic, physiological, optical, and computational tools, has enormous potential for the visualization of neuronal circuits, and for monitoring and manipulating their activity. Here we will summarize the latest developments in this fast moving field and provide a perspective for the use of this technology for the dissection of neuronal circuit structure and function in the normal and diseased brain.


Asunto(s)
Red Nerviosa/química , Neuronas/química , Neuronas/virología , Virus de la Rabia/genética , Proteínas Recombinantes/análisis , Animales , Tecnología Biomédica/métodos , Tecnología Biomédica/tendencias , Humanos , Red Nerviosa/metabolismo , Red Nerviosa/virología , Neuronas/metabolismo , Virus de la Rabia/metabolismo , Proteínas Recombinantes/metabolismo , Sinapsis/química , Sinapsis/metabolismo , Sinapsis/virología
13.
Nat Commun ; 3: 1080, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23011134

RESUMEN

Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerol-producing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as a molecular substrate for fragile X syndrome, which might be targeted by therapy.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Glicéridos/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Lipoproteína Lipasa/genética , Masculino , Ratones , Ratones Noqueados , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Proc Natl Acad Sci U S A ; 103(15): 5781-6, 2006 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-16574773

RESUMEN

PINC is a large, alternatively spliced, developmentally regulated, noncoding RNA expressed in the regressed terminal ductal lobular unit-like structures of the parous mammary gland. Previous studies have shown that this population of cells possesses not only progenitor-like qualities (the ability to proliferate and repopulate a mammary gland) and the ability to survive developmentally programmed cell death but also the inhibition of carcinogen-induced proliferation. Here we report that PINC expression is temporally and spatially regulated in response to developmental stimuli in vivo and that PINC RNA is localized to distinct foci in either the nucleus or the cytoplasm in a cell-cycle-specific manner. Loss-of-function experiments suggest that PINC performs dual roles in cell survival and regulation of cell-cycle progression, suggesting that PINC may contribute to the developmentally mediated changes previously observed in the terminal ductal lobular unit-like structures of the parous gland. This is one of the first reports describing the functional properties of a large, developmentally regulated, mammalian, noncoding RNA.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Empalme Alternativo , Animales , Femenino , Lactancia , Mamíferos , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN no Traducido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA