Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(6): 863-74, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21640374

RESUMEN

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Huntington/tratamiento farmacológico , Ácido Quinurénico/análisis , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Tiazoles/uso terapéutico , Administración Oral , Enfermedad de Alzheimer/fisiopatología , Animales , Química Encefálica , Modelos Animales de Enfermedad , Femenino , Humanos , Ácido Quinurénico/sangre , Masculino , Ratones , Ratones Transgénicos , Sulfonamidas/administración & dosificación , Tiazoles/administración & dosificación
2.
Biochemistry ; 62(5): 976-988, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36813261

RESUMEN

Tau aggregate-bearing lesions are pathological markers and potential mediators of tauopathic neurodegenerative diseases, including Alzheimer's disease. The molecular chaperone DJ-1 colocalizes with tau pathology in these disorders, but it has been unclear what functional link exists between them. In this study, we examined the consequences of tau/DJ-1 interaction as isolated proteins in vitro. When added to full-length 2N4R tau under aggregation-promoting conditions, DJ-1 inhibited both the rate and extent of filament formation in a concentration-dependent manner. Inhibitory activity was low affinity, did not require ATP, and was not affected by substituting oxidation incompetent missense mutation C106A for wild-type DJ-1. In contrast, missense mutations previously linked to familial Parkinson's disease and loss of α-synuclein chaperone activity, M26I and E64D, displayed diminished tau chaperone activity relative to wild-type DJ-1. Although DJ-1 directly bound the isolated microtubule-binding repeat region of tau protein, exposure of preformed tau seeds to DJ-1 did not diminish seeding activity in a biosensor cell model. These data reveal DJ-1 to be a holdase chaperone capable of engaging tau as a client in addition to α-synuclein. Our findings support a role for DJ-1 as part of an endogenous defense against the aggregation of these intrinsically disordered proteins.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Enfermedad de Parkinson/metabolismo , Proteínas tau/genética , Chaperonas Moleculares/genética , Proteína Desglicasa DJ-1/genética
3.
Neurobiol Dis ; 185: 106236, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495179

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Humanos , Drosophila/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Huntington/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
PLoS Genet ; 16(11): e1009129, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33170836

RESUMEN

The enzyme kynurenine 3-monooxygenase (KMO) operates at a critical branch-point in the kynurenine pathway (KP), the major route of tryptophan metabolism. As the KP has been implicated in the pathogenesis of several human diseases, KMO and other enzymes that control metabolic flux through the pathway are potential therapeutic targets for these disorders. While KMO is localized to the outer mitochondrial membrane in eukaryotic organisms, no mitochondrial role for KMO has been described. In this study, KMO deficient Drosophila melanogaster were investigated for mitochondrial phenotypes in vitro and in vivo. We find that a loss of function allele or RNAi knockdown of the Drosophila KMO ortholog (cinnabar) causes a range of morphological and functional alterations to mitochondria, which are independent of changes to levels of KP metabolites. Notably, cinnabar genetically interacts with the Parkinson's disease associated genes Pink1 and parkin, as well as the mitochondrial fission gene Drp1, implicating KMO in mitochondrial dynamics and mitophagy, mechanisms which govern the maintenance of a healthy mitochondrial network. Overexpression of human KMO in mammalian cells finds that KMO plays a role in the post-translational regulation of DRP1. These findings reveal a novel mitochondrial role for KMO, independent from its enzymatic role in the kynurenine pathway.


Asunto(s)
Quinurenina 3-Monooxigenasa/metabolismo , Quinurenina/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Alelos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Dinaminas/metabolismo , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Quinurenina 3-Monooxigenasa/genética , Masculino , Mitofagia/genética , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
5.
J Neurochem ; 158(2): 539-553, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797782

RESUMEN

Converging lines of evidence from several models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington's disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components. In a prospective single-site controlled cohort study with standardised collection of cerebrospinal fluid (CSF), blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites-tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid-in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures and derived sample-size calculation for future studies. Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.


Asunto(s)
Enfermedad de Huntington/sangre , Enfermedad de Huntington/líquido cefalorraquídeo , Quinurenina/sangre , Quinurenina/líquido cefalorraquídeo , Transducción de Señal , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cromatografía Líquida de Alta Presión , Estudios de Cohortes , Femenino , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos
6.
Arch Biochem Biophys ; 697: 108702, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33275878

RESUMEN

Kynurenine-3-monooxygenase (KMO) is an important therapeutic target for several brain disorders that has been extensively studied in recent years. Potent inhibitors towards KMO have been developed and tested within different disease models, showing great therapeutic potential, especially in models of neurodegenerative disease. The inhibition of KMO reduces the production of downstream toxic kynurenine pathway metabolites and shifts the flux to the formation of the neuroprotectant kynurenic acid. However, the efficacy of KMO inhibitors in neurodegenerative disease has been limited by their poor brain permeability. Combined with virtual screening and prodrug strategies, a novel brain penetrating KMO inhibitor has been developed which dramatically decreases neurotoxic metabolites. This review highlights the importance of KMO as a drug target in neurological disease and the benefits of brain permeable inhibitors in modulating kynurenine pathway metabolites in the central nervous system.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/metabolismo
7.
Mov Disord ; 36(8): 1744-1758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33939203

RESUMEN

Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
8.
PLoS Biol ; 16(4): e2003611, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29630591

RESUMEN

Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras del Transporte Vesicular/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Encéfalo/metabolismo , GMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Larva/genética , Larva/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/citología , Unión Neuromuscular/metabolismo , Fenotipo , Prenilación , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
9.
Hum Mol Genet ; 26(19): 3763-3775, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934390

RESUMEN

Huntington's disease is neurodegenerative disorder caused by a polyglutamine expansion in the N-terminal region of the huntingtin protein (N17). Here, we analysed the relative contribution of each phosphorylatable residue in the N17 region (T3, S13 and S16) towards huntingtin exon 1 (HTTex1) oligomerization, aggregation and toxicity in human cells and Drosophila neurons. We used bimolecular fluorescence complementation to show that expression of single phosphomimic mutations completely abolished HTTex1 aggregation in human cells. In Drosophila, mimicking phosphorylation at T3 decreased HTTex1 aggregation both in larvae and adult flies. Interestingly, pharmacological or genetic inhibition of protein phosphatase 1 (PP1) prevented HTTex1 aggregation in both human cells and Drosophila while increasing neurotoxicity in flies. Our findings suggest that PP1 modulates HTTex1 aggregation by regulating phosphorylation on T3. In summary, our study suggests that modulation of HTTex1 single phosphorylation events by PP1 could constitute an efficient and direct molecular target for therapeutic interventions in Huntington's disease.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila , Exones , Humanos , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Mutación , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Agregado de Proteínas/genética
10.
Nature ; 496(7445): 382-5, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23575632

RESUMEN

Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.


Asunto(s)
Ciclopropanos/química , Ciclopropanos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Quinurenina 3-Monooxigenasa/química , Saccharomyces cerevisiae/enzimología , Arginina/metabolismo , Barrera Hematoencefálica/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida , Conformación Proteica , Reproducibilidad de los Resultados , Relación Estructura-Actividad
11.
PLoS Genet ; 12(4): e1005995, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27123591

RESUMEN

Alpha-Synuclein (aSyn) misfolding and aggregation is common in several neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies, which are known as synucleinopathies. Accumulating evidence suggests that secretion and cell-to-cell trafficking of pathological forms of aSyn may explain the typical patterns of disease progression. However, the molecular mechanisms controlling aSyn aggregation and spreading of pathology are still elusive. In order to obtain unbiased information about the molecular regulators of aSyn oligomerization, we performed a microscopy-based large-scale RNAi screen in living cells. Interestingly, we identified nine Rab GTPase and kinase genes that modulated aSyn aggregation, toxicity and levels. From those, Rab8b, Rab11a, Rab13 and Slp5 were able to promote the clearance of aSyn inclusions and rescue aSyn induced toxicity. Furthermore, we found that endocytic recycling and secretion of aSyn was enhanced upon Rab11a and Rab13 expression in cells accumulating aSyn inclusions. Overall, our study resulted in the identification of new molecular players involved in the aggregation, toxicity, and secretion of aSyn, opening novel avenues for our understanding of the molecular basis of synucleinopathies.


Asunto(s)
Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Agregado de Proteínas/genética , alfa-Sinucleína/genética , Proteínas de Unión al GTP rab/biosíntesis , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Proteínas de la Membrana/genética , Proteínas Oncogénicas/genética , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Proteínas Tirosina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/genética , Quinasas DyrK
12.
Proc Natl Acad Sci U S A ; 113(19): 5435-40, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114543

RESUMEN

Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.


Asunto(s)
Quinurenina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Triptófano Oxigenasa/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Drosophila , Enfermedades Neurodegenerativas/patología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
13.
Brain ; 140(5): 1399-1419, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398476

RESUMEN

α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Envejecimiento/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila , Inhibidores Enzimáticos/farmacología , Femenino , Glicosilación/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Ratones , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , Piruvaldehído/farmacología , Ratas , Levaduras/efectos de los fármacos , Levaduras/fisiología , alfa-Sinucleína/efectos de los fármacos , alfa-Sinucleína/fisiología
14.
Semin Cell Dev Biol ; 40: 134-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25773161

RESUMEN

Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been closely linked to the pathogenesis of several neurodegenerative diseases. Tryptophan is an essential amino acid required for protein synthesis, and in higher eukaryotes is also converted into the key neurotransmitters serotonin and tryptamine. However, in mammals >95% of tryptophan is metabolized through the KP, ultimately leading to the production of nicotinamide adenosine dinucleotide (NAD(+)). A number of the pathway metabolites are neuroactive; e.g. can modulate activity of several glutamate receptors and generate/scavenge free radicals. Imbalances in absolute and relative levels of KP metabolites have been strongly associated with neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases. The KP has also been implicated in the pathogenesis of other brain disorders (e.g. schizophrenia, bipolar disorder), as well as several cancers and autoimmune disorders such as HIV. Pharmacological and genetic manipulation of the KP has been shown to ameliorate neurodegenerative phenotypes in a number of model organisms, suggesting that it could prove to be a viable target for the treatment of such diseases. Here, we provide an overview of the KP, its role in neurodegeneration and the current strategies for therapeutic targeting of the pathway.


Asunto(s)
Quinurenina/metabolismo , Redes y Vías Metabólicas , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Triptófano/metabolismo
15.
Hum Mol Genet ; 24(4): 1077-91, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305083

RESUMEN

A central pathological hallmark of Parkinson's disease (PD) is the presence of proteinaceous depositions known as Lewy bodies, which consist largely of the protein α-synuclein (aSyn). Mutations, multiplications and polymorphisms in the gene encoding aSyn are associated with familial forms of PD and susceptibility to idiopathic PD. Alterations in aSyn impair neuronal vesicle formation/transport, and likely contribute to PD pathogenesis by neuronal dysfunction and degeneration. aSyn is functionally associated with several Rab family GTPases, which perform various roles in vesicle trafficking. Here, we explore the role of the endosomal recycling factor Rab11 in the pathogenesis of PD using Drosophila models of aSyn toxicity. We find that aSyn induces synaptic potentiation at the larval neuromuscular junction by increasing synaptic vesicle (SV) size, and that these alterations are reversed by Rab11 overexpression. Furthermore, Rab11 decreases aSyn aggregation and ameliorates several aSyn-dependent phenotypes in both larvae and adult fruit flies, including locomotor activity, degeneration of dopaminergic neurons and shortened lifespan. This work emphasizes the importance of Rab11 in the modulation of SV size and consequent enhancement of synaptic function. Our results suggest that targeting Rab11 activity could have a therapeutic value in PD.


Asunto(s)
Transmisión Sináptica , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Drosophila , Femenino , Expresión Génica , Modelos Biológicos , Unión Neuromuscular/metabolismo , Enfermedad de Parkinson/metabolismo , Fenotipo , Transporte de Proteínas , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , alfa-Sinucleína/genética
17.
Proc Natl Acad Sci U S A ; 111(19): 7012-7, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24706893

RESUMEN

The yeast Hsp31 minifamily proteins (Hsp31, Hsp32, Hsp33, Hsp34) belong to the highly conserved DJ-1 superfamily. The human DJ-1 protein is associated with cancer and neurodegenerative disorders, such as Parkinson disease. However, the precise function of human and yeast DJ-1 proteins is unclear. Here we show that the yeast DJ-1 homologs have a role in diauxic-shift (DS), characterized by metabolic reprogramming because of glucose limitation. We find that the Hsp31 genes are strongly induced in DS and in stationary phase (SP), and that deletion of these genes reduces chronological lifespan, impairs transcriptional reprogramming at DS, and impairs the acquisition of several typical characteristics of SP, including autophagy induction. In addition, under carbon starvation, the HSP31 family gene-deletion strains display impaired autophagy, disrupted target of rapamycin complex 1 (TORC1) localization to P-bodies, and caused abnormal TORC1-mediated Atg13 phosphorylation. Repression of TORC1 by rapamycin in the gene-deletion strains completely reversed their sensitivity to heat shock. Taken together, our data indicate that Hsp31 minifamily is required for DS reprogramming and cell survival in SP, and plays a role upstream of TORC1. The enhanced understanding of the cellular function of these genes sheds light into the biological role of other members of the superfamily, including DJ-1, which is an attractive target for therapeutic intervention in cancer and in Parkinson disease.


Asunto(s)
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Autofagia/genética , Carbono/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estrés Oxidativo/fisiología , Saccharomyces cerevisiae/citología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
18.
Hum Mol Genet ; 23(3): 755-66, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24070869

RESUMEN

The oxidation-sensitive chaperone protein DJ-1 has been implicated in several human disorders including cancer and neurodegenerative diseases. During neurodegeneration associated with protein misfolding, such as that observed in Alzheimer's disease and Huntington's disease (HD), both oxidative stress and protein chaperones have been shown to modulate disease pathways. Therefore, we set out to investigate whether DJ-1 plays a role in HD. We found that DJ-1 expression and its oxidation state are abnormally increased in the human HD brain, as well as in mouse and cell models of HD. Furthermore, overexpression of DJ-1 conferred protection in vivo against neurodegeneration in yeast and Drosophila. Importantly, the DJ-1 protein directly interacted with an expanded fragment of huntingtin Exon 1 (httEx1) in test tube experiments and in cell models and accelerated polyglutamine aggregation and toxicity in an oxidation-sensitive manner. Our findings clearly establish DJ-1 as a potential therapeutic target for HD and provide the basis for further studies into the role of DJ-1 in protein misfolding diseases.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Drosophila/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Oncogénicas/genética , Oxidación-Reducción , Péptidos/metabolismo , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Levaduras/genética
19.
Hum Mol Genet ; 23(12): 3129-37, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24452335

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder which is inherited in an autosomal dominant manner. HD is caused by a trinucleotide CAG repeat expansion that encodes a polyglutamine stretch in the huntingtin (HTT) protein. Mutant HTT expression leads to a myriad of cellular dysfunctions culminating in neuronal loss and consequent motor, cognitive and psychiatric disturbances in HD patients. The length of the CAG repeat is inversely correlated with age of onset (AO) in HD patients, while environmental and genetic factors can further modulate this parameter. Here, we explored whether the recently described copy-number variation (CNV) of the gene SLC2A3-which encodes the neuronal glucose transporter GLUT3-could modulate AO in HD. Strikingly, we found that increased dosage of SLC2A3 delayed AO in an HD cohort of 987 individuals, and that this correlated with increased levels of GLUT3 in HD patient cells. To our knowledge this is the first time that CNV of a candidate gene has been found to modulate HD pathogenesis. Furthermore, we found that increasing dosage of Glut1-the Drosophila melanogaster homologue of this glucose transporter-ameliorated HD-relevant phenotypes in fruit flies, including neurodegeneration and life expectancy. As alterations in glucose metabolism have been implicated in HD pathogenesis, this study may have important therapeutic relevance for HD.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/genética , Edad de Inicio , Animales , Línea Celular , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Dosificación de Gen , Humanos , Enfermedad de Huntington/patología , Masculino , Filogenia , Regulación hacia Arriba
20.
Hum Mol Genet ; 23(25): 6732-45, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25092884

RESUMEN

Alpha-synuclein (aSyn) misfolding and aggregation are pathological features common to several neurodegenerative diseases, including Parkinson's disease (PD). Mounting evidence suggests that aSyn can be secreted and transferred from cell to cell, participating in the propagation and spreading of pathological events. Rab11, a small GTPase, is an important regulator in both endocytic and secretory pathways. Here, we show that Rab11 is involved in regulating aSyn secretion. Rab11 knockdown or overexpression of either Rab11a wild-type (Rab11a WT) or Rab11a GDP-bound mutant (Rab11a S25N) increased secretion of aSyn. Furthermore, we demonstrate that Rab11 interacts with aSyn and is present in intracellular inclusions together with aSyn. Moreover, Rab11 reduces aSyn aggregation and toxicity. Our results suggest that Rab11 is involved in modulating the processes of aSyn secretion and aggregation, both of which are important mechanisms in the progression of aSyn pathology in PD and other synucleinopathies.


Asunto(s)
Cuerpos de Inclusión/química , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Transporte Biológico , Línea Celular Tumoral , Exosomas/química , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Cuerpos de Inclusión/metabolismo , Neuronas/citología , Plásmidos/química , Plásmidos/metabolismo , Agregado de Proteínas/genética , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Transducción de Señal , Transfección , alfa-Sinucleína/genética , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA