Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(15): 3277-3290.e16, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413988

RESUMEN

The Alpha, Beta, and Gamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and 2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which, in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied substantially by VOC and identify countries that acted as global and regional hubs of dissemination. We demonstrate the declining role of presumed origin countries of VOCs in their global dispersal, estimating that India contributed <15% of Delta exports and South Africa <1%-2% of Omicron dispersal. We estimate that >80 countries had received introductions of Omicron within 100 days of its emergence, associated with accelerated passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly transmissible variants, with implications for genomic surveillance along the hierarchical airline network.


Asunto(s)
Viaje en Avión , COVID-19 , Humanos , Filogenia , SARS-CoV-2
2.
Nature ; 603(7902): 679-686, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35042229

RESUMEN

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Evasión Inmune , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Botswana/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Humanos , Modelos Moleculares , Mutación , Filogenia , Recombinación Genética , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Nature ; 592(7854): 438-443, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33690265

RESUMEN

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for substantial evolutionary changes to the virus1,2. Here we describe a newly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain that may have functional importance3-5. This lineage was identified in South Africa after the first wave of the epidemic in a severely affected metropolitan area (Nelson Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage spread rapidly, and became dominant in Eastern Cape, Western Cape and KwaZulu-Natal provinces within weeks. Although the full import of the mutations is yet to be determined, the genomic data-which show rapid expansion and displacement of other lineages in several regions-suggest that this lineage is associated with a selection advantage that most plausibly results from increased transmissibility or immune escape6-8.


Asunto(s)
COVID-19/virología , Mutación , Filogenia , Filogeografía , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Análisis Mutacional de ADN , Evolución Molecular , Aptitud Genética , Humanos , Evasión Inmune , Modelos Moleculares , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Selección Genética , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35763571

RESUMEN

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Asunto(s)
Linfocitos B , Antígenos VIH , VIH-1 , Linfoma Relacionado con SIDA , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Linfocitos B/virología , Variación Genética , Antígenos VIH/genética , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Linfoma Relacionado con SIDA/epidemiología , Linfoma Relacionado con SIDA/virología , Prevalencia , Estudios Retrospectivos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
5.
Emerg Infect Dis ; 30(2): 310-320, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38270216

RESUMEN

We generated 238 Zika virus (ZIKV) genomes from 135 persons in Brazil who had samples collected over 1 year to evaluate virus persistence. Phylogenetic inference clustered the genomes together with previously reported ZIKV strains from northern Brazil, showing that ZIKV has been remained relatively stable over time. Temporal phylogenetic analysis revealed limited within-host diversity among most ZIKV-persistent infected associated samples. However, we detected unusual virus temporal diversity from >5 persons, uncovering the existence of divergent genomes within the same patient. All those patients showed an increase in neutralizing antibody levels, followed by a decline at the convalescent phase of ZIKV infection. Of interest, in 3 of those patients, titers of neutralizing antibodies increased again after 6 months of ZIKV infection, concomitantly with real-time reverse transcription PCR re-positivity, supporting ZIKV reinfection events. Altogether, our findings provide evidence for the existence of ZIKV reinfection events.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/genética , Infección por el Virus Zika/epidemiología , Formación de Anticuerpos , Brasil/epidemiología , Filogenia , Reinfección , Anticuerpos Neutralizantes
6.
Emerg Infect Dis ; 29(3): 664-667, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823719

RESUMEN

We tested coatis (Nasua nasua) living in an urban park near a densely populated area of Brazil and found natural SARS-CoV-2 Zeta variant infections by using quantitative reverse transcription PCR, genomic sequencing, and serologic surveillance. We recommend a One Health strategy to improve surveillance of and response to COVID-19.


Asunto(s)
COVID-19 , Procyonidae , Animales , Humanos , SARS-CoV-2 , Brasil/epidemiología
7.
Emerg Infect Dis ; 29(6): 1270-1273, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069695

RESUMEN

Phylogenetic analysis of 34 monkeypox virus genome sequences isolated from patients in Minas Gerais, Brazil, revealed initial importation events in early June 2022, then community transmission within the state. All generated genomes belonged to the B.1 lineage responsible for a global mpox outbreak. These findings can inform public health measures.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Mpox/epidemiología
9.
J Med Virol ; 95(6): e28848, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37294038

RESUMEN

During COVID-19 pandemic, consensus genomic sequences were used for rapidly monitor the spread of the virus worldwide. However, less attention was paid to intrahost genetic diversity. In fact, in the infected host, SARS-CoV-2 consists in an ensemble of replicating and closely related viral variants so-called quasispecies. Here we show that intrahost single nucleotide variants (iSNVs) represent a target for contact tracing analysis. Our data indicate that in the acute phase of infection, in highly likely transmission links, the number of viral particles transmitted from one host to another (bottleneck size) is large enough to propagate iSNVs among individuals. Furthermore, we demonstrate that, during SARS-CoV-2 outbreaks when the consensus sequences are identical, it is possible to reconstruct the transmission chains by genomic investigations of iSNVs. Specifically, we found that it is possible to identify transmission chains by limiting the analysis of iSNVs to only three well-conserved genes, namely nsp2, ORF3, and ORF7.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cuasiespecies , Pandemias , Genoma Viral
10.
J Med Virol ; 95(4): e28714, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37000592

RESUMEN

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Asia/epidemiología , Evolución Biológica
11.
J Med Virol ; 95(3): e28625, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852665

RESUMEN

Recombination is the main contributor to RNA virus evolution, and SARS-CoV-2 during the pandemic produced several recombinants. The most recent SARS-CoV-2 recombinant is the lineage labeled XBB, also known as Gryphon, which arose from BJ.1 and BM.1.1.1. Here we performed a genome-based survey aimed to compare the new recombinant with its parental lineages that never became dominant. Genetic analyses indicated that the recombinant XBB and its first descendant XBB.1 show an evolutionary condition typical of an evolutionary blind background with no further epidemiologically relevant descendant. Genetic variability and expansion capabilities are slightly higher than parental lineages. Bayesian Skyline Plot indicates that XBB reached its plateau around October 6, 2022 and after an initial rapid growth the viral population size did not further expand, and around November 10, 2022 its levels of genetic variability decreased. Simultaneously with the reduction of the XBB population size, an increase of the genetic variability of its first sub-lineage XBB.1 occurred, that in turn reached the plateau around November 9, 2022 showing a kind of vicariance with its direct progenitors. Structure analysis indicates that the affinity for ACE2 surface in XBB/XBB.1 RBDs is weaker than for BA.2 RBD. In conclusion, at present XBB and XBB.1 do not show evidence about a particular danger or high expansion capability. Genome-based monitoring must continue uninterrupted to individuate if further mutations can make XBB more dangerous or generate new subvariants with different expansion capability.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , Glicoproteína de la Espiga del Coronavirus/química
12.
J Med Virol ; 95(9): e29075, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37665162

RESUMEN

The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Evolución Biológica , Flujo Genético , Densidad de Población
13.
J Med Virol ; 95(8): e29012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548148

RESUMEN

This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias/prevención & control , Salud Pública , Brotes de Enfermedades
14.
J Med Virol ; 95(4): e28688, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946498

RESUMEN

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Asunto(s)
COVID-19 , Infecciones por Polyomavirus , Poliomavirus , Infecciones del Sistema Respiratorio , Virus , Lactante , Niño , Humanos , Metagenómica , Brasil/epidemiología , Malaui/epidemiología , Filogenia , SARS-CoV-2 , Infecciones por Polyomavirus/epidemiología , Poliomavirus/genética , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología
15.
Transfus Apher Sci ; 62(1): 103516, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35941020

RESUMEN

Human gemykibivirus-2 (HuGkV-2) belonging to the Gemykibivirus genus (Genomoviridae family) is an emerging DNA virus which has been described as a component of the virome of a wide variety of samples including clinical ones. So far, the HuGkV-2 DNA prevalence in the human population as well as its clinical impact are completely unknown. The objective of this study was to investigate the HuGkV-2 DNA prevalence among Brazilian healthy blood donors from three different geographic regions. A total of 450 blood samples were screened for HuGkV-2 DNA (150 samples were from the Brazilian Amazon, 150 from Midwest Brazil and 150 from South Brazil). The overall HuGkV-2 DNA prevalence was 7.8 %. Considering the examined regions, the highest prevalence was observed in the Brazilian Amazon (city of Macapa, state of Amapa), 15.3 %, followed by the Midwest Brazil (city of Brasilia, Federal District) (6.0 %) and South Brazil (city of Santa Maria, Rio Grande do Sul State) (2.0 %). This study gives preliminary insights on the molecular prevalence of HuGkV-2 DNA among Brazilian blood donors, highlighting that the highest HuGkV-2 prevalence was recorded in the Brazilian Amazon. However, more studies regarding the prevalence, transmission routes and any possible clinical effects appear to be crucial in order to understand the impact of this emerging viral agent.


Asunto(s)
Donantes de Sangre , Humanos , Brasil/epidemiología , Prevalencia
16.
BMC Public Health ; 23(1): 15, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597102

RESUMEN

BACKGROUND: Brazil has been dramatically hit by the SARS-CoV-2 pandemic and is a world leader in COVID-19 morbidity and mortality. Additionally, the largest country of Latin America has been a continuous source of SARS-CoV-2 variants and shows extraordinary variability of the pandemic strains probably related to the country´s outstanding position as a Latin American economical and transportation hub. Not all regions of the country show sufficient infrastructure for SARS-CoV-2 diagnosis and genotyping which can negatively impact the pandemic response. METHODS: Due to this reason and to disburden the diagnostic system of the inner São Paulo State, the Butantan Institute established the Mobile Laboratory (in Portuguese: LabMovel) for SARS-CoV-2 testing which started a trip of the most important "hotspots" of the most populous Brazilian region. The LabMovel initiated in two important cities of the State: Aparecida do Norte (an important religious center) and the Baixada Santista region which incorporates the port of Santos, the busiest in Latin America. The LabMovel was fully equipped with an automatized system for SARS-CoV-2 diagnosis and sequencing/genotyping. It also integrated the laboratory systems for patient records and results divulgation including in the Federal Brazilian Healthcare System. RESULTS: Currently,16,678 samples were tested, among them 1,217 from Aparecida and 4,564 from Baixada Santista. We tracked the delta introductio in the tested regions with its high diversification. The established mobile SARS-CoV-2 laboratory had a major impact on the Public Health System of the included cities including timely delivery of the results to the healthcare agents and the Federal Healthcare system, evaluation of the vaccination status of the positive individuals in the background of exponential vaccination process in Brazil and scientific and technological divulgation of the fieldwork to the most vulnerable populations. CONCLUSIONS: The SARS-CoV-2 pandemic has demonstrated worldwide the importance of science to fight against this viral agent and the LabMovel shows that it is possible to integrate researchers, clinicians, healthcare workers and patients to take rapid actions that can in fact mitigate this and other epidemiological situations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Brasil/epidemiología , Pandemias/prevención & control , Poblaciones Vulnerables
17.
Mem Inst Oswaldo Cruz ; 117: e220109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700579

RESUMEN

BACKGROUND: The human immunodeficiency virus type 1, F1 sub-subtype (HIV-1 F1) circulates in three continents: Africa, Europe, and South America. In Brazil, this sub-subtype co-circulates with subtypes B and C and several recombinant forms, mainly BF1 variants. OBJECTIVES: This study aimed to reconstruct the dynamic history of HIV-1 F1 in Brazil. METHODS: HIV-1 near full-length genome and pol gene nucleotide sequences available in public databases were assembled in two datasets (POL671 and NFLG53) to cover the largest number of F1 sub-subtype sequences. Phylodynamic and temporal analyses were performed. FINDINGS: Two main strains of the F1 sub-subtype are circulating worldwide. The first (F1.I) was found among Brazilian samples (75%) and the second (F1.II) among Romanian (62%) and other European and African isolates. The F1 subtype epidemic in Brazil originated from a single entry into the country around 1970. This ancestral sample is related to samples isolated in European countries (France, Finland, and Belgium), which are possibly of African origin. Moreover, further migration (1998 CI: 1994-2003) of strains from Brazil to Europe (Spain and the UK) was observed. Interestingly, all different recombinant BF patterns found, even those from outside Brazil, present the same F1 lineage (F1.I) as an ancestor, which could be related to the acquisition of adaptive advantages for the recombinant progenies. MAIN CONCLUSIONS: These findings are important for the understanding of the origin and dynamics of the F1 sub-subtype and a consequent better and greater understanding of the HIV-1 F1 and BF epidemic that still spreads from Brazil to other countries.


Asunto(s)
VIH-1 , Filogenia , Humanos , Brasil , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética
18.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569570

RESUMEN

HIV-1 replication in the gastrointestinal (GI) tract causes severe CD4+ T-cell depletion and disruption of the protective epithelial barrier in the intestinal mucosa, causing microbial translocation, the main driver of inflammation and immune activation, even in people living with HIV (PLWH) taking antiretroviral drug therapy. The higher levels of HIV DNA in the gut compared to the blood highlight the importance of the gut as a viral reservoir. CD4+ T-cell subsets in the gut differ in phenotypic characteristics and differentiation status from the ones in other tissues or in peripheral blood, and little is still known about the mechanisms by which the persistence of HIV is maintained at this anatomical site. This review aims to describe the interaction with key subsets of CD4+ T cells in the intestinal mucosa targeted by HIV-1 and the role of gut microbiome and its metabolites in HIV-associated systemic inflammation and immune activation that are crucial in the pathogenesis of HIV infection and related comorbidities.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Mucosa Intestinal/patología , Linfocitos T CD4-Positivos , Inflamación , Tejido Linfoide
19.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686383

RESUMEN

The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.


Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/genética , SARS-CoV-2/genética , Flujo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA