RESUMEN
INTRODUCTION AND OBJECTIVES: Epigenetic changes represent a mechanism connecting external stresses with long-term modifications of gene expression programs. In solid organ transplantation, ischemia-reperfusion injury (IRI) appears to induce epigenomic changes in the graft, although the currently available data are extremely limited. The present study aimed to characterize variations in DNA methylation and their effects on the transcriptome in liver transplantation from brain-dead donors. PATIENTS AND METHODS: 12 liver grafts were evaluated through serial biopsies at different timings in the procurement-transplantation process: T0 (warm procurement, in donor), T1 (bench surgery), and T2 (after reperfusion, in recipient). DNA methylation (DNAm) and transcriptome profiles of biopsies were analyzed using microarrays and RNAseq. RESULTS: Significant variations in DNAm were identified, particularly between T2 and T0. Functional enrichment of the best 1000 ranked differentially methylated promoters demonstrated that 387 hypermethylated and 613 hypomethylated promoters were involved in spliceosomal assembly and response to biotic stimuli, and inflammatory immune responses, respectively. At the transcriptome level, T2 vs. T0 showed an upregulation of 337 and downregulation of 61 genes, collectively involved in TNF-α, NFKB, and interleukin signaling. Cell enrichment analysis individuates macrophages, monocytes, and neutrophils as the most significant tissue-cell type in the response. CONCLUSIONS: In the process of liver graft procurement-transplantation, IRI induces significant epigenetic changes that primarily act on the signaling pathways of inflammatory responses dependent on TNF-α, NFKB, and interleukins. Our DNAm datasets are the early IRI methylome literature and will serve as a launch point for studying the impact of epigenetic modification in IRI.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Trasplante de Hígado , Hígado , Daño por Reperfusión , Trasplante de Hígado/efectos adversos , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Persona de Mediana Edad , Femenino , Perfilación de la Expresión Génica/métodos , Transcriptoma , Adulto , AncianoRESUMEN
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Niño , Dieta , Humanos , Estilo de Vida , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés OxidativoRESUMEN
Fibrosis is the strongest predictor for disease-specific mortality in non-alcoholic fatty liver diseases (NAFLD), but the need for liver biopsy limits its diagnosis. We assessed the performance of plasma ficolin-2 (FCN-2) as a biomarker of fibrosis identified by an in silico discovery strategy. Two hundred and thirty-five morbidly obese (MO) subjects with biopsy-proven NAFLD stratified by fibrosis stage (F0, n = 44; F1, n = 134; F2, n = 46; F3/F4, n = 11) and 40 cirrhotic patients were enrolled. The cohort was subdivided into discovery (n = 76) and validation groups (n = 159). The plasma level of FCN-2 and other candidate markers was determined. FCN-2 was inversely correlated with the stage of liver fibrosis (ρ = −0.49, p < 0.001) independently of steatosis (p = 0.90), inflammation (p = 0.57), and ballooning (p = 0.59). In the global cohort, FCN-2 level decreased significantly in a stepwise fashion from F0/F1 (median 4753 ng/mL) to F2−F3−F4 (2760 ng/mL) and in cirrhotic subjects (1418 ng/mL). The diagnostic performance of FCN-2 in detecting F ≥ 2 was higher than other indexes (APRI, FIB-4) (AUROC 0.82, 0.68, and 0.6, respectively). The accuracy improved when combined with APRI score and HDL values (FCNscore, AUROC 0.85). Overall, the FCN-2 plasma level can accurately discriminate liver fibrosis status (minimal vs. moderate/advanced) significantly improving the fibrosis diagnostic algorithms.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Biomarcadores , Biopsia , Fibrosis , Humanos , Lectinas , Hígado/patología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad Mórbida/patología , FicolinasRESUMEN
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is strictly associated with the epidemic of obesity and is becoming the most prevalent liver disease worldwide. In severe obesity, bariatric surgery (BS) is the most effective treatment not only for obesity but also for the associated metabolic co-morbidities, NAFLD, among others. To date, noninvasive diagnostic/prognostic methods cannot evaluate hepatic improvements following surgery. OBJECTIVES: We aimed to measure plasma level of insulin-growth factor-2 protein (IGF2) and epithermal growth factor receptor (EGFR), and to assess their relationship with clinical and biochemical parameters during the 12 months follow-up. METHODS: Demographic, clinical-biochemical data, and plasma IGF2 and EGFR were measured in 69 patients preoperatively (T0) and 6 and 12 months (T6M and T12M, respectively) after BS. Liver biopsy was performed at T0. Relationships between IGF2, EGFR, and several biochemical parameters were performed using Pearson or Spearman correlation analysis. RESULTS: IGF2 plasma level increases during follow-up, passing from 2.5 (1.8-15.5) at baseline to 13.3 (8.6-19.1) at T12M, p < 0.001. Conversely, EGFR showed a not significant reduction. At T12M, the plasma level of both markers was comparable to those of lean subjects. The clinical-biochemical parameters (BMI, glycated hemoglobin, HOMA-IR) also return to the normal range at T12M. Correlation analysis demonstrated that IGF2 was significantly associated with total bilirubin, direct bilirubin, and albumin at T0 while with blood glucose, ALT, GGT, and AST/ALT ratio at T6M and T12M. CONCLUSIONS: IGF2 plasma levels increase after bariatric surgery, and these changes are associated with the modification of hepatic biochemical parameters, even if other clinic or metabolic improvements cannot be excluded.
Asunto(s)
Factor II del Crecimiento Similar a la Insulina/análisis , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Adulto , Cirugía Bariátrica , Receptores ErbB/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Resultado del TratamientoRESUMEN
Differences in taste perception have been related to eating behavior, nutritional status, and diseases. Recently, taste receptors have been identified in several extra-oral tissues, such as the gastrointestinal tract, where they seem to influence processes like digestion, sense of satiety as well as energy balance and intraluminal changes occurring in obesity. Our study aims to analyze differences in taste perception among 42 obese patients (OB) and 41 normal-weight subjects (LEAN). Polymorphisms in the gene codifying for the bitter taste receptor TAS2R38 and its expression on the surface of the gastric mucosa were tested and compared among OB and LEAN. Taste intensity of PROP (6-n-propylthiouracil), quinine, sucrose, citric acid and NaCl were measured on a labeled magnitude scale. DNA from peripheral whole blood was extracted and three polymorphisms in the TAS2R38 gene (rs713598, rs1726866, rs10246939) analyzed. Gastric biopsies were collected during bariatric surgery in OB and during endoscopy in LEAN. RNA was extracted and TAS2R38 gene expression assessed by RT-Real-Time qPCR. Anamnestic and anthropometric data were recorded in all participants during baseline visits. Logistic regression analysis showed that OB perceives sweet (sucrose) and bitter (PROP or 6-n-propylthiouracil) taste more intensely than LEAN (p-value = 0.02 and p-value = 0.005, respectively). While polymorphisms in TAS2R38 gene did not differ among OB and LEAN, we observed a significant increase of TAS2R38 mRNA levels in the stomach of OB compared to LEAN (p = 0.01). Our results provide new evidence of a link between obesity and altered taste perception as well as TAS2R38 expression in the stomach.
Asunto(s)
Receptores Acoplados a Proteínas G/genética , Percepción del Gusto , Gusto , Humanos , Obesidad/genética , Propiltiouracilo , Estómago , Percepción del Gusto/genéticaRESUMEN
BACKGROUND & AIMS: Obesity is associated with non-alcoholic fatty liver (NAFL), which may progress towards non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). Occult hepatitis B virus infection (OBI) may contribute to hepatic damage in patients with chronic liver disease of different aetiologies (eg HCV, alcohol). However, information on the prevalence and clinical impact of OBI in obese individuals is lacking. The aims of this study were to investigate NASH prevalence and risk factors in obese people who underwent bariatric surgery. METHODS: Two-hundred and twenty-six subjects (160 females; mean age 42.9 years ±10.8 SD) without evidence of any further cause of liver disease consecutively underwent bariatric surgery in two Italian liver centers. During surgery, all patients underwent liver biopsy for histological evaluation and molecular studies. Liver DNA extracts were tested for PNPLA3, TM6SF2, MBOAT7, IRGM polymorphisms and for OBI. Univariate and multivariate analyses were used to identify predictors of NASH. RESULTS: Histology showed NASH in 115 (50.9%) and NAFL in 111 cases (49.1%). Twenty-nine/226 (12.8%) cases had OBI, 24 (82.8%) of whom had NASH and 5 (17.2%) NAFL, whereas among the 197 OBI-negative cases, 91 (46.2%) had NASH and 106 (53.8%) NAFL (P = .0002). Multivariate analysis showed that older age (P = .03, OR 1.034), alanine aminotransferase values (P = .005, OR 1.023), insulin resistance/diabetes (P = .02, OR 2.257), TM6SF2 polymorphism (P = .04, OR 3.168) and OBI (P = .004, OR 5.503) were independent predictors of NASH. CONCLUSION: NASH is highly prevalent in obese individuals undergoing bariatric surgery. OBI is one of the strongest risk factors of NASH in these patients.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Adulto , Anciano , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/etiología , Femenino , Virus de la Hepatitis B , Humanos , Italia/epidemiología , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Obesidad/complicaciones , Obesidad/epidemiologíaRESUMEN
Silybin has been proposed as a treatment for nonalcoholic steatohepatitis (NASH). In this study, we assessed the effect of Silybin in a well-established in vitro coculture model of early-stage NASH. LX2 and Huh7 cells were exposed to free fatty acid (FFA) and Silybin as mono- or coculture (SCC). Cell viability, LX2 activation, collagen deposition, metalloproteinase 2 and 9 (MMP2-9) activity, and ROS generation were determined at 24, 96, and 144 h. Exposure to FFA induced the activation of LX2 as shown by the increase in cell viability and upregulation of collagen biosynthesis. Interestingly, while cotreatment with Silybin did not affect collagen production in LX2, a significant reduction was observed in SCC. MMP2-9 activity was reduced in FFA-treated Huh7 and SCC and cotreatment with Silybin induced a dose-dependent increase, while no effect was observed in LX2. Silybin also showed antioxidant properties by reducing the FFA-induced production of ROS in all the cell systems. Based on these data, Silybin exerts its beneficial effects by reducing LX2 proliferation and ROS generation. Moreover, MMP2-9 modulation in hepatocytes represents the driving mechanism for the net reduction of collagen in this NASH in vitro model, highlighting the importance of hepatic cells interplay in NASH development and resolution.
Asunto(s)
Colágeno/metabolismo , Hígado/metabolismo , Silibina/farmacología , Línea Celular , Supervivencia Celular , Técnicas de Cocultivo , Ácidos Grasos no Esterificados , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder, tightly associated with obesity. The histological spectrum of the disease ranges from simple steatosis to steatohepatitis, with different stages of fibrosis, and fibrosis stage is the most significant predictor of mortality in NAFLD. Liver biopsy continues to be the gold standard for its diagnosis and reliable non-invasive diagnostic tools are unavailable. We investigated the accuracy of candidate proteins, identified by an in silico approach, as biomarkers for diagnosis of fibrosis. METHODS: Seventy-one morbidly obese (MO) subjects with biopsy-proven NAFLD were enrolled, and the cohort was subdivided according to minimal (F0/F1) or moderate (F2/F3) fibrosis. The plasmatic level of CD44 antigen (CD44), secreted protein acidic and rich in cysteine (SPARC), epidermal growth factor receptor (EGFR) and insulin-like growth factor 2 (IGF2) were determined by ELISA. Significant associations between plasmatic levels and histological fibrosis were determined by correlation analysis and the diagnostic accuracy by the area under receiver operating characteristic curves (AUROC). RESULTS: Eighty-two percentage of the subjects had F0/F1 and 18% with F2/F3 fibrosis. Plasmatic levels of IGF2, EGFR and their ratio (EGFR/IGF2) were associated with liver fibrosis, correlating inversely for IGF2 (P < .006) and directly (P < .018; P < .0001) for EGFR and EGFR/IGF2 respectively. The IGF2 marker had the best diagnostic accuracy for moderate fibrosis (AUROC 0.83), followed by EGFR/IGF2 ratio (AUROC 0.79) and EGFR (AUROC 0.71). CONCLUSIONS: Our study supports the potential utility of IGF2 and EGFR as non-invasive diagnostic biomarkers for liver fibrosis in morbidly obese subjects.
Asunto(s)
Simulación por Computador , Factor II del Crecimiento Similar a la Insulina/análisis , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad Mórbida/complicaciones , Mapas de Interacción de Proteínas , Adulto , Anciano , Biomarcadores/sangre , Biopsia , Estudios de Casos y Controles , Receptores ErbB/sangre , Femenino , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/etiología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Obesidad Mórbida/sangre , Obesidad Mórbida/diagnóstico , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND & AIMS: Non-alcoholic fatty liver disease is characterized by an initial accumulation of triglycerides that can progress to non-alcoholic steatohepatitis, which can ultimately evolve to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells play a key role in liver fibrogenesis by an increased activation and an altered profile of genes involved in the turnover of extracellular matrix components. To reproduce in-vitro the functional cell connections observed in vivo it is essential to consider cell-to-cell proximity and interaction. The aim of this study was to determine the response to free fatty acids in a simultaneous co-culture model of hepatocytes and hepatic stellate cells. METHODS: Simultaneous co-culture model and monoculture of each cell type (control) were exposed to FFA for 24 up to 144 h. Quantification of steatosis; stellate cell activation; assessment of fibrogenic response; expression and activity of metalloproteinases as well as collagen biosynthesis were evaluated. RESULTS: Free fatty acids induced comparable steatosis in simultaneous co-culture and monoculture. However, the activation of the stellate cells assessed by alpha-smooth muscle actin expression is greater when cells were in close contact. Furthermore, a time-dependent increment of tissue inhibitor metalloproteinase-2 protein was observed, which was inversely correlated with protein expression and activity of matrix-metalloproteinases, suggesting enhanced collagen biosynthesis. This behavior was absent in cell monoculture. CONCLUSIONS: These data indicate that cell-to-cell proximity between hepatocytes and stellate cells is necessary for the initiation of the fibrotic process.
Asunto(s)
Matriz Extracelular/efectos de los fármacos , Ácidos Grasos no Esterificados/farmacología , Células Estrelladas Hepáticas/patología , Hepatocitos/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Hígado/patología , Western Blotting , Células Cultivadas , Técnicas de Cocultivo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas para Inmunoenzimas , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismoRESUMEN
Hepatocellular carcinoma (HCC) is a malignancy marked by heterogeneity. This study aimed to discover target molecules for potential therapeutic efficacy that may encompass HCC heterogeneity. In silico analysis using published datasets identified 16 proto-oncogenes as potential pharmacological targets. We used an immortalized hepatocyte (IHH) and five HCC cell lines under two subtypes: S1/TGFß-Wnt-activated (HLE, HLF, and JHH6) and the S2/progenitor subtype (HepG2 and Huh7). Three treatment modalities, 5 µM 5-Azacytidine, 50 µM Sorafenib, and 20 nM PD-L1 gene silencing, were evaluated in vitro. The effect of treatments on the proto-oncogene targets was assessed by gene expression and Western blot analysis. Our results showed that 10/16 targets were upregulated in HCC cells, where cells belonging to the S2/progenitor subtype had more upregulated targets compared to the S1/TGFß-Wnt-activated subtype (81% vs. 62%, respectively). Among the targets, FGR was consistently down-regulated in the cell lines following the three different treatments. Sorafenib was effective to down-regulate targets in S2/progenitor subtype while PD-L1 silencing was able to decrease targets in all HCC subtypes, suggesting that this treatment strategy may comprise cellular heterogeneity. This study strengthens the relevance of liver cancer cellular heterogeneity in response to cancer therapies.
RESUMEN
Introduction: Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by loss of expression of paternal chromosome 15q11.2-q13 genes. Individuals with PWS exhibit unique physical, endocrine, and metabolic traits associated with severe obesity. Identifying liver steatosis in PWS is challenging, despite its lower prevalence compared to non-syndromic obesity. Reliable biomarkers are crucial for the early detection and management of this condition associated with the complex metabolic profile and cardiovascular risks in PWS. Methods: Circulating proteome profiling was conducted in 29 individuals with PWS (15 with steatosis, 14 without) using the Olink Target 96 metabolism and cardiometabolic panels. Correlation analysis was performed to identify the association between protein biomarkes and clinical variables, while the gene enrichment analysis was conducted to identify pathways linked to deregulated proteins. Receiver operating characteristic (ROC) curves assessed the discriminatory power of circulating protein while a logistic regression model evaluated the potential of a combination of protein biomarkers. Results: CDH2, CTSO, QDPR, CANT1, ALDH1A1, TYMP, ADGRE, KYAT1, MCFD, SEMA3F, THOP1, TXND5, SSC4D, FBP1, and CES1 exhibited a significant differential expression in liver steatosis, with a progressive increase from grade 1 to grade 3. FBP1, CES1, and QDPR showed predominant liver expression. The logistic regression model, -34.19 + 0.85 * QDPR*QDPR + 0.75 * CANT1*TYMP - 0.46 * THOP1*ALDH1A, achieved an AUC of 0.93 (95% CI: 0.63-0.99), with a sensitivity of 93% and specificity of 80% for detecting steatosis in individuals with PWS. These biomarkers showed strong correlations among themselves and were involved in an interconnected network of 62 nodes, related to seven metabolic pathways. They were also significantly associated with cholesterol, LDL, triglycerides, transaminases, HbA1c, FLI, APRI, and HOMA, and showed a negative correlation with HDL levels. Conclusion: The biomarkers identified in this study offer the potential for improved patient stratification and personalized therapeutic protocols.
Asunto(s)
Hígado Graso , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Proteoma , Obesidad/complicaciones , Hígado Graso/diagnóstico , Biomarcadores , Proteínas de la Membrana , Proteínas del Tejido NerviosoRESUMEN
INTRODUCTION: Few data exist on regional brain bilirubin content in the neonatal period when acute bilirubin-induced neurologic damage (BIND) may occur, and no information is available on regional brain expression of cytochrome P450 monooxygenases (Cyps) that oxidize bilirubin. METHODS: Bilirubin content was analyzed by high-performance liquid chromatography and Cyp1a1, 1a2, and 2a3 mRNA expression was analyzed by quantitative PCR (qPCR) in cortex (Cx), cerebellum (Cll), superior colliculi (SC), and inferior colliculi (IC) of 17-d-old hyperbilirubinemic (jj) Gunn rat pups before and after administration of sulphadimethoxine to acutely displace bilirubin from plasma albumin. RESULTS: There was no difference in bilirubin content among brain regions in untreated rats. After intraperitoneal sulphadimethoxine, bilirubin content peaked at fourfold in Cx and SC at 1 h; but at 11- to 13-fold in Cll and IC at 24 h; returning to control levels at 72 h. The Cyp mRNA peaked at 30-70 times control at 1 h in Cx and SC, but at 3-9 times control at 24 h in Cll and IC. DISCUSSION: The close relationship in distinct brain regions between the extent of bilirubin accumulation and induction of mRNA of Cyps suggests Cyps may have a role in protecting selected brain areas from bilirubin neurotoxicity.
Asunto(s)
Animales Recién Nacidos/metabolismo , Bilirrubina/metabolismo , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ictericia/metabolismo , ARN Mensajero/metabolismo , Colículos Superiores/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Albúminas/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6 , Modelos Animales de Enfermedad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ratas , Ratas Gunn , Sulfadimetoxina/farmacologíaRESUMEN
NAFLD is an emerging healthcare epidemic that is causing predictable adverse consequences for healthcare systems, societies and individuals. Whilst NAFLD is recognized as a multi-system disease with compound pathways that are both benign and pernicious in their unfolding; NASH is generally understood as a deleterious follow-on condition with path-specific tendencies that progress to cirrhosis, HCC and liver transplantation. Recent evidence is beginning to challenge this interpretation demanding more attention to the personalized nature of the disease and its pathogenesis across multiple different cohorts. This means that we need better diagnostic and prognostic tools not only to capture those 'at risk' disease phenotypes; but for better stratification and monitoring of patients according to their treatment strategies. With the advent of pipeline therapies for NASH underway, the medical profession looks to adopt more accurate non-invasive diagnostic tools that can help to delineate and eliminate NASH histology. This review looks at the search for the killer application revealing this particular moment in time as a transformational period; one that is pushing the boundaries of technology to integrate diverse panels of species through sensitive profiling and multi-omics approaches that cast wide, yet powerful diagnostic nets that have the potential to elucidate pathway specific biomarkers that are personalized and predictable.
RESUMEN
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) in adolescents is challenging the global care system. No therapeutic strategies have been defined so far, and changes in the lifestyle remain the only alternative. In this study, we assessed the protective effects of silymarin in a juvenile non-alcoholic steatohepatitis (NASH) model and the in vitro effects on fat-laden human hepatocytes. C57Bl/6 mice were exposed to HFHC diet immediately after weaning. After eight weeks, animals showed histological signs of NASH. Silymarin was added to the HFHC diet, the treatment continued for additional 12 weeks and the effects on BMI, hepatomegaly, visceral fat, lipid profile, transaminases, HOMA-IR, steatosis, inflammation, fibrosis, oxidative stress, and apoptosis were determined. The switch from HFHC to control diet was used to mimic life style changes. In vitro experiments were performed in parallel in human hepatocytes. HFHC diet supplemented with silymarin showed a significant improvement in glycemia, visceral fat, lipid profile, and liver fibrosis. Moreover, it reduced (both in vitro and in vivo) ALT, hepatic inflammation, oxidative stress, and apoptosis. Lifestyle changes restored the control group parameters. The data presented show the beneficial effects of the oral administration of silymarin in the absence of changes in the dietary habits in a juvenile model of NASH.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Silimarina/farmacología , Administración Oral , Alanina Transaminasa/sangre , Animales , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Insulina/sangre , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
A rapid and simple assay (6 min, two steps) is described for determination of cell viability of hepatocytes subjected to cold preservation protocols. In this method, cells are incubated with the fluorescent marker propidium iodide (PI) and the fluorescence intensity is measured before (direct fluorescence--Fd) and after (total fluorescence--Ft) addition of digitonin, which allows the dye to enter the hepatocytes. The Fd originated from non-viable cells that have membrane damage and taken up PI. The Ft originated from all cells in the sample. The ratio between the two fluorescence values is used as an indicator of cell viability. The assay was challenged versus two classical viability tests: LDH retention and Trypan Blue exclusion. Our assay shows good correlation only with Trypan Blue test. In addition, a fluorescence confocal microscopy protocol was used to evaluate the possible toxicity of PI in hepatocyte suspensions.
Asunto(s)
Criopreservación/métodos , Colorantes Fluorescentes , Hepatocitos/citología , Propidio , Animales , Supervivencia Celular , Frío , Masculino , Ratas , Ratas WistarRESUMEN
BACKGROUND & AIM: A complex interplay exists between hepatocytes and hepatic stellate cells (HSC) in hepatic fibrogenesis. The activation of HSCs after liver injury leads to production of extracellular matrix (ECM). Co-culture models could be useful to mimic the liver microenvironment. This study evaluates the effect of free fatty acids (FFA) on HSC cells and the interplay with hepatocytes via both soluble-mediator and cell-cell contact. METHODS: The human hepatocyte cell line (HuH7) and HSC cells (LX2) were exposed to FFA for 24 h in 3 different experimental set-ups: (A) monoculture of HSC; (B) Transwell® system (effect of soluble mediators); and (C) Simultaneous Co-Culture (SCC) (cell-to-cell connections). Intracellular FFA accumulation was assessed qualitatively (microscopy) and quantitatively (flow cytometry); the activation of HSC (alpha smooth muscle actin, α-SMA) expression of ECM components were quantified by RT-PCR. RESULTS: FFA exposure induces intracellular fat accumulation in all the experimental set-up but the expression of α-SMA was significantly increased only in SCC. On the contrary, the expression of ECM was substantially decreased in the transwell® system. CONCLUSIONS: The HSC activation is independent of FFA accumulation but requires cell-to-cell interaction with hepatocyte. On the contrary, the gene regulation of ECM components seems to occur through paracrine mediators.
Asunto(s)
Células Estrelladas Hepáticas/fisiología , Hepatocitos/fisiología , Enfermedad del Hígado Graso no Alcohólico , Actinas/genética , Comunicación Celular , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Ácidos Grasos no Esterificados/farmacología , Proteínas del Choque Térmico HSP47/genética , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-2/genéticaRESUMEN
We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na(+)-independent cystineâ¶glutamate exchanger System X(c)(-) (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System X(c)(-), without the contribution of the others two cystine transporters (X(AG)(-) and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System X(c)(-) is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System X(c)(-), and this renders the cell less prone to oxidative damage.