RESUMEN
Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country.IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.
Asunto(s)
Fiebre de Lassa/virología , Virus Lassa/clasificación , Animales , Evolución Molecular , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Virus Lassa/genética , Murinae/virología , Nigeria/epidemiología , Filogenia , FilogeografíaRESUMEN
BACKGROUND: There is anecdotal evidence for Lassa virus persistence in body fluids. We aimed to investigate various body fluids after recovery from acute Lassa fever, describe the dynamics of Lassa virus RNA load in seminal fluid, and assess the infectivity of seminal fluid. METHODS: In this prospective, longitudinal, cohort study we collected plasma, urine, saliva, lacrimal fluid, vaginal fluid, and seminal fluid from Lassa fever survivors from Irrua Specialist Teaching Hospital in Edo State, Nigeria. Inclusion criteria for participants were RT-PCR-confirmed Lassa fever diagnosis and age 18 years or older. Samples were taken at discharge from hospital (month 0) and at months 0·5, 1, 3, 6, 9, 12, 18, and 24 after discharge. The primary objective of this study was to quantitatively describe virus persistence and clearance and assess the infectivity of seminal fluid. Lassa virus RNA was detected using real-time RT-PCR. Infectivity was tested in cell culture and immunosuppressed mice. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: Between Jan 31, 2018, and Dec 11, 2019, 165 participants were enrolled in the study, of whom 159 were eligible for analysis (49 women and 110 men). Low amounts of Lassa virus RNA were detected at month 0 in plasma (49 [45%] of 110 participants), urine (37 [34%]), saliva (five [5%]), lacrimal fluid (ten [9%]), and vaginal fluid (seven [21%] of 33 female participants). Virus RNA was cleared from these body fluids by month 3. However, 35 (80%) of 44 male participants had viral RNA in seminal fluid at month 0 with a median cycle threshold of 26·5. Lassa virus RNA remained detectable up to month 12 in seminal fluid. Biostatistical modelling estimated a clearance rate of 1·19 log10 viral RNA copies per month and predicted that 50% of male survivors remain Lassa virus RNA-positive in seminal fluid for 83 days after hospital discharge and 10% remain positive in seminal fluid for 193 days after discharge. Viral RNA persistence in seminal fluid for 3 months or more was associated with higher viraemia (p=0·006), more severe disease (p=0·0075), and longer hospitalisation during the acute phase of Lassa fever (p=0·0014). Infectious virus was isolated from 48 (52%) of 93 virus RNA-positive seminal fluid samples collected between month 0 and 12. INTERPRETATION: Lassa virus RNA is shed in various body fluids after recovery from acute disease. The persistence of infectious virus in seminal fluid implies a risk of sexual transmission of Lassa fever. FUNDING: German Federal Ministry of Health, German Research Foundation, Leibniz Association.