Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur Respir J ; 52(5)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30262579

RESUMEN

Differences in lung anatomy between mice and humans, as well as frequently disappointing results when using animal models for drug discovery, emphasise the unmet need for in vitro models that can complement animal studies and improve our understanding of human lung physiology, regeneration and disease. Recent papers have highlighted the use of three-dimensional organoids and organs-on-a-chip to mimic tissue morphogenesis and function in vitro Here, we focus on the respiratory system and provide an overview of these in vitro models, which can be derived from primary lung cells and pluripotent stem cells, as well as healthy or diseased lungs. We emphasise their potential application in studies of respiratory development, regeneration and disease modelling.


Asunto(s)
Dispositivos Laboratorio en un Chip , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Organogénesis , Organoides/fisiología , Animales , Línea Celular , Humanos , Enfermedades Pulmonares/fisiopatología , Células Madre Pluripotentes/citología
2.
Arterioscler Thromb Vasc Biol ; 36(4): 707-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821948

RESUMEN

OBJECTIVE: To determine the role of Gja5 that encodes for the gap junction protein connexin40 in the generation of arteriovenous malformations in the hereditary hemorrhagic telangiectasia type 2 (HHT2) mouse model. APPROACH AND RESULTS: We identified GJA5 as a target gene of the bone morphogenetic protein-9/activin receptor-like kinase 1 signaling pathway in human aortic endothelial cells and importantly found that connexin40 levels were particularly low in a small group of patients with HHT2. We next took advantage of the Acvrl1(+/-) mutant mice that develop lesions similar to those in patients with HHT2 and generated Acvrl1(+/-); Gja5(EGFP/+) mice. Gja5 haploinsufficiency led to vasodilation of the arteries and rarefaction of the capillary bed in Acvrl1(+/-) mice. At the molecular level, we found that reduced Gja5 in Acvrl1(+/-) mice stimulated the production of reactive oxygen species, an important mediator of vessel remodeling. To normalize the altered hemodynamic forces in Acvrl1(+/-); Gja5(EGFP/+) mice, capillaries formed transient arteriovenous shunts that could develop into large malformations when exposed to environmental insults. CONCLUSIONS: We identified GJA5 as a potential modifier gene for HHT2. Our findings demonstrate that Acvrl1 haploinsufficiency combined with the effects of modifier genes that regulate vessel caliber is responsible for the heterogeneity and severity of the disease. The mouse models of HHT have led to the proposal that 3 events-heterozygosity, loss of heterozygosity, and angiogenic stimulation-are necessary for arteriovenous malformation formation. Here, we present a novel 3-step model in which pathological vessel caliber and consequent altered blood flow are necessary events for arteriovenous malformation development.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo I/metabolismo , Malformaciones Arteriovenosas/enzimología , Conexinas/metabolismo , Células Endoteliales/enzimología , Vasos Retinianos/enzimología , Telangiectasia Hemorrágica Hereditaria/enzimología , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Animales , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/patología , Células Cultivadas , Conexinas/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Ratones Mutantes , Ratones Transgénicos , Neovascularización Patológica , Fenotipo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Vasos Retinianos/patología , Transducción de Señal , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/patología , Transfección , Remodelación Vascular , Proteína alfa-5 de Unión Comunicante
3.
Differentiation ; 86(1-2): 30-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23933400

RESUMEN

Transposon gene delivery systems offer an alternative, non-viral-based approach to generate induced pluripotent stem cells (iPSCs). Here we used the Sleeping Beauty (SB) transposon to generate four human iPSC lines from foetal fibroblasts. In contrast to other gene delivery systems, the SB transposon does not exhibit an integration bias towards particular genetic elements, thereby reducing the risk of insertional mutagenesis. Furthermore, unlike the alternative transposon piggyBac, SB has no SB-like elements within the human genome, minimising the possibility of mobilising endogenous transposon elements. All iPSC lines exhibited the expected characteristics of pluripotent human cells, including the ability to differentiate to derivatives of all three germ layers in vitro. Re-expression of the SB transposase in the iPSCs after reprogramming resulted in the mobilisation of some of the transposons. These results indicate that the SB transposon system is a useful addition to methods for generating human iPSCs, both for basic and applied biomedical research, and in the context of future therapeutic application.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Madre Embrionarias/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Técnicas de Transferencia de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
4.
Elife ; 102021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586063

RESUMEN

Lung epithelial progenitors differentiate into alveolar type 1 (AT1) and type 2 (AT2) cells. These cells form the air-blood interface and secrete surfactant, respectively, and are essential for lung maturation and function. Current protocols to derive and culture alveolar cells do not faithfully recapitulate the architecture of the distal lung, which influences cell fate patterns in vivo. Here, we report serum-free conditions that allow for growth and differentiation of mouse distal lung epithelial progenitors. We find that Collagen I promotes the differentiation of flattened, polarized AT1 cells. Using these organoids, we performed a chemical screen to investigate WNT signaling in epithelial differentiation. We identify an association between Casein Kinase activity and maintenance of an AT2 expression signature; Casein Kinase inhibition leads to an increase in AT1/progenitor cell ratio. These organoids provide a simplified model of alveolar differentiation and constitute a scalable screening platform to identify and analyze cell differentiation mechanisms.


Asunto(s)
Diferenciación Celular , Alveolos Pulmonares/citología , Células Madre/citología , Animales , Caseína Quinasas/antagonistas & inhibidores , Caseína Quinasas/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Medio de Cultivo Libre de Suero , Células Epiteliales/citología , Células Epiteliales/metabolismo , Marcadores Genéticos , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/embriología , Alveolos Pulmonares/enzimología , Alveolos Pulmonares/metabolismo , Transcripción Genética , Vía de Señalización Wnt
5.
EMBO Mol Med ; 7(4): 394-410, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25700171

RESUMEN

Drugs targeting atrial-specific ion channels, Kv1.5 or Kir3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)-derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial-like (hESC-atrial) and ventricular-like (hESC-ventricular) CMs. We found the expression of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and KCNJ3 (encoding Kir 3.1), in hESC-atrial CMs and further demonstrated that these ion channel genes are regulated by COUP-TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and Kv1.5 blocker, XEN-D0101, hESC-atrial but not hESC-ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC-atrial CMs, XEN-R0703, a novel Kir3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN-R0703 had an effect on hESC-ventricular CMs. In summary, we demonstrate that hESC-atrial CMs are a robust model for pre-clinical testing to assess atrial selectivity of novel antiarrhythmic drugs.


Asunto(s)
Fibrilación Atrial , Sistemas de Liberación de Medicamentos/métodos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Evaluación Preclínica de Medicamentos/métodos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/biosíntesis , Expresión Génica , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Humanos , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/biosíntesis , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA