Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811816

RESUMEN

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Masculino
2.
J Clin Endocrinol Metab ; 109(5): 1250-1262, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38044551

RESUMEN

CONTEXT: Atherosclerosis is a dominant cause of cardiovascular disease (CVD), including myocardial infarction and stroke. OBJECTIVE: To investigate metabolic states that are associated with the development of atherosclerosis. METHODS: Cross-sectional cohort study at a university hospital in the Netherlands. A total of 302 adult subjects with a body mass index (BMI) ≥ 27 kg/m2 were included. We integrated plasma metabolomics with clinical metadata to quantify the "atherogenic state" of each individual, providing a continuous spectrum of atherogenic states that ranges between nonatherogenic states to highly atherogenic states. RESULTS: Analysis of groups of individuals with different clinical conditions-such as metabolically healthy individuals with obesity, and individuals with metabolic syndrome-confirmed the generalizability of this spectrum; revealed a wide variation of atherogenic states within each condition; and allowed identification of metabolites that are associated with the atherogenic state regardless of the particular condition, such as gamma-glutamyl-glutamic acid and homovanillic acid sulfate. The analysis further highlighted metabolic pathways such as catabolism of phenylalanine and tyrosine and biosynthesis of estrogens and phenylpropanoids. Using validation cohorts, we confirmed variation in atherogenic states in healthy subjects (before atherosclerosis plaques become visible), and showed that metabolites associated with the atherogenic state were also associated with future CVD. CONCLUSION: Our results provide a global view of atherosclerosis risk states using plasma metabolomics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA