Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 128(5): 918-928, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38293769

RESUMEN

Formation of oxidized products from Δ3-carene (C10H16) ozonolysis and their gas-to-particle partitioning at three temperatures (0, 10, and 20 °C) under dry conditions (<2% RH) and also at 10 °C under humid (78% RH) conditions were studied using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) combined with a filter inlet for gases and aerosols (FIGAERO). The Δ3-carene ozonolysis products detected by the FIGAERO-ToF-CIMS were dominated by semivolatile organic compounds (SVOCs). The main effect of increasing temperature or RH on the product distribution was an increase in fragmentation of monomer compounds (from C10 to C7 compounds), potentially via alkoxy scission losing a C3 group. The equilibrium partitioning coefficient estimated according to equilibrium partitioning theory shows that the measured SVOC products distribute more into the SOA phase as the temperature decreases from 20 to 10 and 0 °C and for most products as the RH increases from <2 to 78%. The temperature dependency of the saturation vapor pressure (above an assumed liquid state), derived from the partitioning method, also allows for a direct way to obtain enthalpy of vaporization for the detected species without accessibility of authentic standards of the pure substances. This method can provide physical properties, beneficial for, e.g., atmospheric modeling, of complex multifunctional oxidation products.

2.
Phys Chem Chem Phys ; 25(47): 32430-32442, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991397

RESUMEN

The role of airborne nanoparticles in atmospheric chemistry and public health is largely controlled by particle size, morphology, surface composition, and coating. Aerosol mass spectrometry provides real-time chemical characterization of submicron atmospheric particles, but analysis of nanoplastics in complex aerosol mixtures such as sea spray is severely limited by challenges associated with separation and ionization of the aerosol matrix. Here we characterize the internal and external mixing state of synthetic sea spray aerosols spiked with 150 nm nanoplastics. Aerosols generated from pneumatic atomization and from a sea spray tank are compared. A humidified tandem differential mobility analyzer is used as a size and hygroscopicity filter, resulting in separation of nanoplastics from sea spray, and an inline high-resolution time-of-flight aerosol mass spectrometer is used to characterize particle composition and ionization efficiency. The separation technique amplified the detection limit of the airborne nanoplastics. A salt coating was found on the nanoplastics with coating thickness increasing exponentially with increasing bulk solution salinity, which was varied from 0 to 40 g kg-1. Relative ionization efficiencies of polystyrene and sea salt chloride were 0.19 and 0.36, respectively. The growth-factor derived hygroscopicity of sea salt was 1.4 at 75% relative humidity. These results underscore the importance of separating airborne nanoplastics from sea salt aerosol for detailed online characterization by aerosol mass spectrometry and characterization of salt coatings as a function of water composition. The surface coating of nanoplastic aerosols by salts can profoundly impact their surface chemistry, water uptake, and humidified particle size distributions in the atmosphere.

3.
Part Fibre Toxicol ; 20(1): 26, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430267

RESUMEN

BACKGROUND: There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning. RESULTS: SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs. CONCLUSIONS: Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.


Asunto(s)
Asma , Humanos , Estudios Cruzados , Biomarcadores , Proteína C-Reactiva , Culinaria , Inflamación , Albúminas , Citocinas , Lípidos
4.
Environ Sci Technol ; 56(23): 16643-16651, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36355568

RESUMEN

The formation of secondary organic aerosol (SOA) from the structurally similar monoterpenes, α-pinene and Δ3-carene, differs substantially. The aerosol phase is already complex for a single precursor, and when mixtures are oxidized, products, e.g., dimers, may form between different volatile organic compounds (VOCs). This work investigates whether differences in SOA formation and properties from the oxidation of individual monoterpenes persist when a mixture of the monoterpenes is oxidized. Ozonolysis of α-pinene, Δ3-carene, and a 1:1 mixture of them was performed in the Aarhus University Research on Aerosol (AURA) atmospheric simulation chamber. Here, ∼100 ppb of monoterpene was oxidized by 200 ppb O3 under dark conditions at 20 °C. The particle number concentration and particle mass concentration for ozonolysis of α-pinene exceed those from ozonolysis of Δ3-carene alone, while their mixture results in concentrations similar to α-pinene ozonolysis. Detailed offline analysis reveals evidence of VOC-cross-product dimers in SOA from ozonolysis of the monoterpene mixture: a VOC-cross-product dimer likely composed of the monomeric units cis-caric acid and 10-hydroxy-pinonic acid and a VOC-cross-product dimer ester likely from the monomeric units caronaldehyde and terpenylic acid were tentatively identified by liquid chromatography-mass spectrometry. To improve the understanding of chemical mechanisms determining SOA, it is relevant to identify VOC-cross-products.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/química , Contaminantes Atmosféricos/química , Aerosoles/química , Monoterpenos/química , Ozono/química
5.
Indoor Air ; 31(6): 2033-2048, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297865

RESUMEN

Burning candles release a variety of pollutants to indoor air, some of which are of concern for human health. We studied emissions of particles and gases from the stressed burning of five types of pillar candles with different wax and wick compositions. The stressed burning was introduced by controlled fluctuating air velocities in a 21.6 m3 laboratory chamber. The aerosol physicochemical properties were measured both in well-mixed chamber air and directly above the candle flame with online and offline techniques. All candles showed different emission profiles over time with high repeatability among replicates. The particle mass emissions from stressed burning for all candle types were dominated by soot (black carbon; BC). The wax and wick composition strongly influenced emissions of BC, PM2.5 , and particle-phase polycyclic aromatic hydrocarbons (PAHs), and to lower degree ultrafine particles, inorganic and organic carbon fraction of PM, but did not influence NOx , formaldehyde, and gas-phase PAHs. Measurements directly above the flame showed empirical evidence of short-lived strong emission peaks of soot particles. The results show the importance of including the entire burn time of candles in exposure assessments, as their emissions can vary strongly over time. Preventing stressed burning of candles can reduce exposure to pollutants in indoor air.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hollín
6.
Indoor Air ; 31(6): 1993-2007, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34235780

RESUMEN

Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5 : 96.1 µg/m3 ), (b) air mixed with emissions from candles (PM2.5 : 89.8 µg/m3 ), and c) clean filtered air (PM2.5 : 5.8 µg/m3 ). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria , Estudios Cruzados , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Tamaño de la Partícula , Material Particulado/efectos adversos , Material Particulado/análisis
7.
Indoor Air ; 31(4): 1084-1094, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33565212

RESUMEN

Emissions from candles are of concern for indoor air quality. In this work, five different types of pillar candles were burned under steady burn conditions in a new laboratory scale system for repeatable and controlled comparison of candle emissions (temperature ~25°C, relative humidity ~13%, O2 >18%, air exchange rate 1.9 h-1 ). Burn rate, particle number concentrations, mass concentrations, and mode diameters varied between candle types. Based on the results, the burning period was divided in two phases: initial (0-1 h) and stable (1-6 h). Burn rates were in the range 4.4-7.3 and 4.7-7.1 g/h during initial and stable phase, respectively. Relative particle number emissions, mode diameters, and mass concentrations were higher during the initial phase compared to the stable phase for a majority of the candles. We hypothesize that this is due to elevated emissions of wick additives upon ignition of the candle together with a slightly higher burn rate in the initial phase. Experiments at higher relative humidity (~40%) gave similar results with a tendency toward larger particle sizes at the higher relative humidity. Chemical composition with respect to inorganic salts was similar in the emitted particles (dry conditions) compared to the candlewicks, but with variations between different candles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Quemaduras , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Humanos , Tamaño de la Partícula , Material Particulado/análisis
8.
Environ Sci Technol ; 54(10): 5980-5991, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32271021

RESUMEN

Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least ∼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.


Asunto(s)
Contaminantes Atmosféricos , Hemiterpenos , Aerosoles/análisis , Brasil , Butadienos , Pentanos , Sudeste de Estados Unidos
9.
Environ Sci Technol ; 53(11): 6192-6202, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31083926

RESUMEN

Organosulfates (OSs) have been observed as substantial constituents of atmospheric organic aerosol (OA) in a wide range of environments; however, the chemical composition, sources, and formation mechanism of OSs are still not well understood. In this study, we first created an "OS precursor map" based on the elemental composition of previous OS chamber experiments. Then, according to this "OS precursor map", we estimated the possible sources and molecular structures of OSs in atmospheric PM2.5 (particles with aerodynamic diameter ≤ 2.5 µm) samples, which were collected in urban areas of Beijing (China) and Mainz (Germany) and analyzed by ultrahigh-performance liquid chromatography (UHPLC) coupled with an Orbitrap mass spectrometer. On the basis of the "OS precursor map", together with the polarity information provided by UHPLC, OSs in Mainz samples are suggested to be mainly derived from isoprene/glyoxal or other unknown small polar organic compounds, while OSs in Beijing samples were generated from both isoprene/glyoxal and anthropogenic sources (e.g., long-chain alkanes and aromatics). The nitrooxy-OSs in the clean aerosol samples were mainly derived from monoterpenes, while much fewer monoterpene-derived nitrooxy-OSs were obtained in the polluted aerosol samples, showing that nitrooxy-OS formation is affected by different precursors in clean and polluted air conditions.


Asunto(s)
Contaminantes Atmosféricos , Sulfatos , Aerosoles , Beijing , China , Monitoreo del Ambiente , Alemania , Espectrometría de Masas
10.
Environ Sci Technol ; 53(15): 8682-8694, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31335134

RESUMEN

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.


Asunto(s)
Atmósfera , Pentanos , Aerosoles , Butadienos , Hemiterpenos , Sulfatos , Tennessee
11.
Environ Sci Technol ; 50(6): 2754-64, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26862779

RESUMEN

Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.


Asunto(s)
Contaminantes Atmosféricos/química , Atmósfera/análisis , Química Orgánica/tendencias , Monitoreo del Ambiente , Aerosoles/química , Atmósfera/química , Química Orgánica/métodos , Clima , Humanos , Compuestos Orgánicos/química , Oxidación-Reducción , Volatilización
12.
Environ Sci Technol ; 50(11): 5580-8, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27176464

RESUMEN

Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-ß-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size.


Asunto(s)
Atmósfera/química , Humedad , Ácidos/química , Aerosoles , Compuestos Epoxi/química
13.
Anal Bioanal Chem ; 408(8): 2171-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26804738

RESUMEN

Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2) > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.


Asunto(s)
Biocombustibles/análisis , Biomasa , Grano Comestible/química , Formiatos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Reactores Biológicos , Destilación , Temperatura , Agua/análisis
14.
Appl Microbiol Biotechnol ; 99(22): 9625-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26169629

RESUMEN

A novel peptidase from thermophilic archaea Sulfolobus tokodaii (ST0779) is examined for its catalytic promiscuity of aldol addition, which shows comparable activity as porcine pancreatic lipase (PPL, one of the best enzymes identified for biocatalytic aldol addition) at 30 °C but much accelerated activity at elevated temperature. The molecular catalytic efficiency kcat/Km (M(-1) s(-1)) of this thermostable enzyme at 55 °C adds up to 140 times higher than that of PPL at its optimum temperature 37 °C. The fluorescence quenching analysis depicts that the binding constants of PPL are significantly higher than those of ST0779, and their numbers of binding sites show opposite temperature dependency. Thermodynamic parameters estimated by fluorescence quenching analysis unveil distinctly different substrate-binding modes between PPL and ST0779: the governing binding interaction between PPL and substrates is hydrophobic force, while the dominating substrate-binding forces for ST0779 are van der Waals and H-bonds interactions. A reasonable mechanism for ST0779-catalyzed aldol reaction is proposed based on kinetic study, spectroscopic analysis, and molecular stereostructure simulation. This work represents a successful example to identify a new enzyme for catalytic promiscuity, which demonstrates a huge potential to discover and exploit novel biocatalyst from thermophile microorganism sources.


Asunto(s)
Aldehídos/metabolismo , Péptido Hidrolasas/metabolismo , Sulfolobus/enzimología , Cinética , Modelos Moleculares , Péptido Hidrolasas/química , Conformación Proteica , Análisis Espectral , Temperatura
15.
Chembiochem ; 15(14): 2113-24, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25138961

RESUMEN

We have used SAXS to determine the low-resolution structure of the outer-membrane protein OmpA from E. coli solubilized by the surfactant dodecyl maltoside (DDM). We have studied three variants of the transmembrane domain of OmpA-namely monomers, self-associated dimers, and covalently linked dimers-as well as the monomeric species of the full-length protein with the periplasmic domain. We can successfully model the structures of the monomeric and covalently linked dimer as one and two natively folded proteins in a DDM micelle, respectively, whereas the noncovalently linked dimer presents a more complicated structure, possibly due to higher-order species. We have determined the structure of the full-length protein to be that of a globular periplasmic domain attached through a flexible linker to the transmembrane domain. This approach provides valuable information about how membrane proteins are embedded in amphiphilic environments.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Detergentes/química , Escherichia coli/química , Glucósidos/química , Dimerización , Micelas , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Solubilidad , Difracción de Rayos X
16.
Atmos Environ (1994) ; 94: 366-373, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24976783

RESUMEN

Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 - 90 pg m-3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m-3, 2-31 pg m-3, 109 pg m-3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (•SO3-, m/z 80) and the sulfate radical (•SO4-,m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

17.
Environ Sci Process Impacts ; 26(7): 1216-1226, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38895946

RESUMEN

Micro- and nanoplastic particles have been detected in most environmental compartments. The presence of microplastics in the remote marine atmosphere and close to large lakes suggests bubble mediated water-air transfer as a source of airborne microplastics, however, quantitative estimates of plastic emission from surface waters remain uncertain. In this work, we elucidate the emission of submicron polystyrene nanospheres by bubble bursting in a laboratory setting from low salinity waters (salinity 0-1.0 g kg-1), polystyrene particle diameter (103, 147 and 269 nm), aqueous particle number concentrations in the range 4 × 107-2 × 109 cm-3, and bubble formation rate (0.88-3.35 L min-1 of air). Production of polystyrene aerosols was demonstrated using a scanning mobility particle sizer and confirmed by analysis of filter samples using pyrolysis gas chromatography coupled to mass spectrometry. We show that production of polystyrene aerosol particles scales linearly with the number concentration of plastic particles in the water. Our results suggest that small amounts (0.01 g kg-1) of salt increase polystyrene particle production. To the best of our knowledge this is the first study of bubble mediated water-air transfer of plastic particles as small as 100 nm.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Microplásticos , Microplásticos/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Poliestirenos/química , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis
18.
J Chromatogr A ; 1717: 464622, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38309189

RESUMEN

Microplastic is ubiquitous in the environment. Recently it was discovered that microplastic (MP, 1 µm-5 mm) contamination is present in the atmosphere where it can be transported over long distances and introduced to remote pristine environments. Sources, concentration levels, and transportation pathways of MP are still associated with large uncertainties. The abundance of atmospheric MP increases with decreasing particle size, suggesting that nanoplastics (NP, <1µm) could be of considerable atmospheric relevance. Only few analytical methods are available for detection of nanosized plastic particles. Thermoanalytical techniques are independent of particle size and are thus a powerful tool for MP and NP analysis. Here we develop a method for analysis of polystyrene on the nanogram scale using pyrolysis gas chromatography coupled to mass spectrometry. Pyrolysis was performed using a slow temperature ramp, and analytes were cryofocused prior to injection. The mass spectrometer was operated in selected ion monitoring (SIM) mode. A lower limit of detection of 1±1 ng and a lower limit of quantification of 2±2 ng were obtained (for the trimer peak). The method was validated with urban matrices of low (7 µg per sample) and high (53 µg per sample) aerosol mass loadings. The method performs well for low loadings, whereas high loadings seem to cause a matrix effect reducing the signal of polystyrene. This effect can be minimized by introducing a thermal desorption step prior to pyrolysis. The study provides a novel analysis method for qualitative and semi-quantitative analysis of PS on the nanogram scale in an aerosol matrix. Application of the method can be used to obtain concentration levels of polystyrene in atmospheric MP and NP. This is important in order to improve the understanding of the sources and sinks of MP and NP in the environment and thereby identify routes of exposure and uptake of this emerging contaminant.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Poliestirenos/análisis , Plásticos/química , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Pirólisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Nanopartículas/química , Aerosoles/análisis
19.
Nat Commun ; 15(1): 3436, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653767

RESUMEN

Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.


Asunto(s)
Lotus , Microbiota , Nitrógeno , Raíces de Plantas , Transducción de Señal , Simbiosis , Lotus/microbiología , Lotus/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Microbiota/fisiología , Rizosfera , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Microbiología del Suelo , Fijación del Nitrógeno , Exudados de Plantas/metabolismo
20.
Environ Sci Technol ; 47(21): 12123-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24107221

RESUMEN

Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.


Asunto(s)
Aerosoles/química , Sulfato de Amonio/química , Atmósfera/química , Ácido Succínico/química , Cromatografía Líquida de Alta Presión/métodos , Ácidos Dicarboxílicos/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Químicos , Compuestos Orgánicos/química , Soluciones , Termodinámica , Volatilización , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA