Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Genes Dev ; 36(15-16): 916-935, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175033

RESUMEN

Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.


Asunto(s)
Células Madre Adultas , Isoformas de ARN , Regiones no Traducidas 3'/genética , Células Madre Adultas/metabolismo , Animales , Masculino , Poliadenilación , Isoformas de Proteínas/genética , Isoformas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Genomics ; 114(1): 305-315, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954349

RESUMEN

Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.


Asunto(s)
Fundulidae , Peces Killi , Adaptación Fisiológica/genética , Altitud , Animales , Fundulidae/genética , Peces Killi/genética , Filogenia , Transcriptoma
3.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108646

RESUMEN

Drosophila melanogaster DAxud1 is a transcription factor that belongs to the Cysteine Serine Rich Nuclear Protein (CSRNP) family, conserved in metazoans, with a transcriptional transactivation activity. According to previous studies, this protein promotes apoptosis and Wnt signaling-mediated neural crest differentiation in vertebrates. However, no analysis has been conducted to determine what other genes it might control, especially in connection with cell survival and apoptosis. To partly answer this question, this work analyzes the role of Drosophila DAxud1 using Targeted-DamID-seq (TaDa-seq), which allows whole genome screening to determine in which regions it is most frequently found. This analysis confirmed the presence of DAxud1 in groups of pro-apoptotic and Wnt pathway genes, as previously described; furthermore, stress resistance genes that coding heat shock protein (HSP) family genes were found as hsp70, hsp67, and hsp26. The enrichment of DAxud1 also identified a DNA-binding motif (AYATACATAYATA) that is frequently found in the promoters of these genes. Surprisingly, the following analyses demonstrated that DAxud1 exerts a repressive role on these genes, which are necessary for cell survival. This is coupled with the pro-apoptotic and cell cycle arrest roles of DAxud1, in which repression of hsp70 complements the maintenance of tissue homeostasis through cell survival modulation.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Neurosci ; 41(30): 6430-6448, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34210781

RESUMEN

The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as "brain sparing." However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood-brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood-brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood-brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain.SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Serina Proteasas/metabolismo , Animales , Barrera Hematoencefálica/crecimiento & desarrollo , Drosophila melanogaster , Femenino , Masculino , Desnutrición
6.
Mol Cell ; 33(6): 679-91, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19328063

RESUMEN

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Bax inhibitor-1 (BI-1) is an evolutionarily conserved ER-resident protein that suppresses cell death. Here we have investigated the role of BI-1 in the UPR. BI-1 expression suppressed IRE1alpha activity in fly and mouse models of ER stress. BI-1-deficient cells displayed hyperactivation of the ER stress sensor IRE1alpha, leading to increased levels of its downstream target X-box-binding protein-1 (XBP-1) and upregulation of UPR target genes. This phenotype was associated with the formation of a stable protein complex between BI-1 and IRE1alpha, decreasing its ribonuclease activity. Finally, BI-1 deficiency increased the secretory activity of primary B cells, a phenomenon regulated by XBP-1. Our results suggest a role for BI-1 in early adaptive responses against ER stress that contrasts with its known downstream function in apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Linfocitos B/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endorribonucleasas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Inmunoglobulina M/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Factores de Transcripción del Factor Regulador X , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box
7.
J Biol Chem ; 290(30): 18699-707, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26063805

RESUMEN

N(6)-Threonylcarbamoyl-adenosine (t(6)A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAi (Met)). Yeast lacking central components of the t(6)A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t(6)A synthesis. In Drosophila and in mammals, tRNAi (Met) is a limiting factor for cell and animal growth. We report that the t(6)A-modified form of tRNAi (Met) is the actual limiting factor. We show that changing the proportion of t(6)A-modified tRNAi (Met), by expression of an un-modifiable tRNAi (Met) or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t(6)A-modified tRNA, determines growth potential in eukaryotic cells.


Asunto(s)
Proliferación Celular/genética , ARN de Transferencia de Metionina/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina-Treonina Quinasas TOR/genética , Proteínas de Transporte Vesicular/genética , Animales , Codón Iniciador/genética , Drosophila/genética , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN/genética , Saccharomyces cerevisiae/genética , Serina-Treonina Quinasas TOR/biosíntesis
9.
Development ; 140(6): 1282-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444356

RESUMEN

Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Femenino , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Organogénesis/genética , Organogénesis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
10.
EMBO J ; 30(21): 4465-78, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926971

RESUMEN

Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.


Asunto(s)
Autofagia/genética , Endorribonucleasas/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada/genética , Ácidos/metabolismo , Animales , Supervivencia Celular/genética , Células Cultivadas , Drosophila/genética , Endorribonucleasas/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Organismos Modificados Genéticamente , Fagosomas/genética , Fagosomas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Inanición/metabolismo , Vesículas Transportadoras/metabolismo , Respuesta de Proteína Desplegada/fisiología
11.
Open Biol ; 13(5): 230049, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161288

RESUMEN

Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.


Asunto(s)
Dopamina , Drosophila , Animales , Drosophila/genética , Larva/genética , Dieta , Encéfalo , Cromatina/genética , Epigénesis Genética , Nutrientes
12.
Life Sci Alliance ; 5(12)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35940847

RESUMEN

Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.


Asunto(s)
Citoesqueleto de Actina , Actinas , Ubiquitina-Proteína Ligasas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , Polimerizacion , Seudópodos/metabolismo
13.
Front Cell Dev Biol ; 10: 859105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721516

RESUMEN

Cells extend membrane protrusions like lamellipodia and filopodia from the leading edge to sense, to move and to form new contacts. The Arp2/3 complex sustains lamellipodia formation, and in conjunction with the actomyosin contractile system, provides mechanical strength to the cell. Drosophila p53-related protein kinase (Prpk), a Tsc5p ortholog, has been described as essential for cell growth and proliferation. In addition, Prpk interacts with proteins associated to actin filament dynamics such as α-spectrin and the Arp2/3 complex subunit Arpc4. Here, we investigated the role of Prpk in cell shape changes, specifically regarding actin filament dynamics and membrane protrusion formation. We found that reductions in Prpk alter cell shape and the structure of lamellipodia, mimicking the phenotypes evoked by Arp2/3 complex deficiencies. Prpk co-localize and co-immunoprecipitates with the Arp2/3 complex subunit Arpc1 and with the small GTPase Rab35. Importantly, expression of Rab35, known by its ability to recruit upstream regulators of the Arp2/3 complex, could rescue the Prpk knockdown phenotypes. Finally, we evaluated the requirement of Prpk in different developmental contexts, where it was shown to be essential for correct Arp2/3 complex distribution and actin dynamics required for hemocytes migration, recruitment, and phagocytosis during immune response.

14.
Biol Res ; 44(1): 25-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720678

RESUMEN

The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fucosiltransferasas/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Manosa/metabolismo , Receptores Notch/metabolismo , Alas de Animales/metabolismo , Alelos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Endocitosis/genética , Fucosiltransferasas/genética , Guanosina Difosfato Fucosa/genética , Guanosina Difosfato Manosa/genética , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Alas de Animales/anatomía & histología
15.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767445

RESUMEN

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

16.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31940424

RESUMEN

Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hemocitos/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Fagocitosis , Canales de Potencial de Receptor Transitorio/metabolismo , Actomiosina/genética , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Señalización del Calcio , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Hemocitos/inmunología , Lisosomas/genética , Macrófagos/inmunología , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Factores de Tiempo , Canales de Potencial de Receptor Transitorio/genética
17.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409639

RESUMEN

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Asunto(s)
Supervivencia Celular/genética , Reparación del ADN , Proteínas de Drosophila/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN/genética , Animales , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleasas/genética , Femenino , Fibroblastos , Inestabilidad Genómica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteostasis/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , ARN Mensajero/metabolismo
18.
Neuroscience ; 396: 66-72, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458219

RESUMEN

Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.


Asunto(s)
Activación del Canal Iónico/efectos de la radiación , Luz , Microvellosidades/metabolismo , Microvellosidades/efectos de la radiación , Células Fotorreceptoras de Invertebrados/citología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de la radiación , Animales , Diacilglicerol Quinasa/biosíntesis , Diglicéridos/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/efectos de la radiación , Drosophila melanogaster , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Potenciales de la Membrana/efectos de los fármacos , Proteína Quinasa C/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonamidas/farmacología , Canales de Potencial de Receptor Transitorio/aislamiento & purificación , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/genética
19.
PLoS One ; 13(4): e0194344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29621246

RESUMEN

BACKGROUND: Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS: Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS: Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Drosophila/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Drosophila/embriología , Desarrollo Embrionario/genética , Metabolismo Energético , Larva , Células-Madre Neurales , Estrés Fisiológico
20.
Mech Dev ; 154: 107-115, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29908237

RESUMEN

Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Metamorfosis Biológica/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Pupa/genética , Pupa/crecimiento & desarrollo , Receptores de Esteroides/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA