Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(38): e202405299, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958449

RESUMEN

Molecular gearing systems are technomimetic nanoscale analogues to complex geared machinery in the macroscopic world. They are defined as systems incorporating intermeshed movable parts which perform correlated rotational motions by mechanical engagement. Only recently, new methods to actively drive molecular gearing motions instead of relying on passive thermal activation have been developed. Further progress in this endeavor will pave the way for unidirectional molecular gearing devices with a distinct type of molecular machine awaiting its realization. Within this work an essential step towards this goal is achieved by evidencing directional biases for the light-induced rotations in our molecular photogear system. Using a custom-designed LED-coupled chiral cryo-HPLC setup for the in situ irradiation of enantiomeric analytes, an intrinsic selectivity for clockwise or counterclockwise rotations was elucidated experimentally. Significant directional biases in the photogearing processes and light-induced single bond rotations (SBRs) are observed for our photogear with directional preferences of up to 4.8 : 1. Harnessing these effects will allow to rationally design and construct a fully directional molecular gearing motor in the future.

2.
Nat Chem ; 14(6): 670-676, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437331

RESUMEN

One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale. Here we present a light-fuelled molecular gearing system and demonstrate its superiority over passive thermally activated gearing. Translation of a 180° rotation into a 120° rotation is achieved while at the same time the direction of the rotation axis is shifted by 120°. Within such photogearing processes, precise motions at the nanoscale can be changed in direction and decelerated in a manner similar to macroscopic bevel-gear operations in an energy consuming way-a necessary prerequisite to employ gearing as an active component in future mechanical nano-systems.


Asunto(s)
Rotación
3.
Chem Sci ; 12(10): 3651-3659, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-34163639

RESUMEN

Introducing responsive elements into supramolecular recognition systems offers great advantages for the control of intermolecular interactions and represents an important stepping stone towards multi-purpose and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness because of the unique ease and precision of this signal. Here we present visible light responsive hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional recognition unit inside their binding site. Sulfur oxidation allows to simultaneously enhance all crucial properties of this receptor type i.e. photoswitching capability, thermal stability of individual switching states, binding affinity, and binding modulation upon switching. With a novel titration method the thermodynamic binding parameters were determined using reduced sample amounts. Employing these strongly enhanced molecular tweezers allowed to demonstrate photocontrol of intermolecular charge transfer in a reversible manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA