Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511390

RESUMEN

New antitubercular agents with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new arylated quinoline carboxylic acids (QCAs) having activity against replicating and non-replicating Mycobacterium tuberculosis (Mtb), the causative agent of TB. Thus, the synthesis, characterization, and in vitro screening (MABA and LORA) of 48 QCAs modified with alkyl, aryl, alkoxy, halogens, and nitro groups in the quinoline ring led to the discovery of two QCA derivatives, 7i and 7m, adorned with C-2 2-(naphthalen-2-yl)/C-6 1-butyl and C-2 22-(phenanthren-3-yl)/C-6 isopropyl, respectively, as the best Mtb inhibitors. DNA gyrase inhibition was shown to be exhibited by both, with QCA 7m illustrating better activity up to a 1 µM test concentration. Finally, a docking model for both compounds with Mtb DNA gyrase was developed, and it showed a good correlation with in vitro results.


Asunto(s)
Mycobacterium tuberculosis , Quinolinas , Mycobacterium tuberculosis/metabolismo , Girasa de ADN/metabolismo , Ácidos Carboxílicos/farmacología , Relación Estructura-Actividad , Antituberculosos/farmacología , Quinolinas/farmacología , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II/farmacología
2.
Data Brief ; 57: 110924, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39328971

RESUMEN

Naphthol Green B (NGB) is a synthetic azo dye widely used in various industries, including textiles and leathers. NGB poses significant environmental and ecological concerns when released into natural water systems. This paper investigates the decolorization of NGB using UV/sulfite system. The % decolorization of NGB was optimized using 32 Full Factorial Design (FFD), and the ANOVA results show that the model has a good fit for the data (R2 = 99.54 %, R2 (adj) = 98.76 %) and the significant factors contributing to the % decolorization are A, B, A2, and B2 where A = mM sulfite and B = pH. The model predicted ≥100 % decolorization with the optimum conditions 12 mM sulfite and pH 10. An actual experiment was conducted to verify the response, resulting in 96.2 % decolorization which is in good agreement with the model.

3.
Curr Drug Targets ; 25(9): 620-634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859782

RESUMEN

The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.


Asunto(s)
Antituberculosos , Diseño de Fármacos , Descubrimiento de Drogas , Mycobacterium tuberculosis , Polifarmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/uso terapéutico , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Diseño Asistido por Computadora , Relación Estructura-Actividad
4.
Data Brief ; 42: 108219, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35539027

RESUMEN

The upsurge of antibiotic usage in the 20th century has resulted in increasing levels of pharmaceutical compounds in bodies of water. A particular antibiotic, levofloxacin, is a third-generation quinolone known to target Gram-positive organisms like atypical pathogens. Chronic toxic effects of levofloxacin to some microorganisms lead to the disruption of marine ecosystems. Unfortunately, a relatively low concentration of levofloxacin in water bodies discourages researchers from exploring potential risk assessment and removal in wastewater treatment plants. In this article, aqueous levofloxacin was degraded using hydroxyapatite catalyst under UV-irradiation. Response Surface Methodology (Box Behnken Model) was used to model and optimize the degradation efficiency parameter. The response was fitted into a 2-factor interaction equation revealing a satisfactory ANOVA evaluation (R2=97.08%, adjusted R2= 94.89, predicted R2=91.1%). An optimal photodegradation efficiency was determined to attain the following conditions: 1.5 g/L catalyst dose, 4 ppm levofloxacin, and a pH level of 10. The model predicted a value of 71.6% degradation efficiency, which is very close to 70.6% generated experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA