Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Breast Cancer Res ; 24(1): 97, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578092

RESUMEN

BACKGROUND: A preoperative-progesterone intervention increases disease-free survival in patients with breast cancer, with an unknown underlying mechanism. We elucidated the role of non-coding RNAs in response to progesterone in human breast cancer. METHODS: Whole transcriptome sequencing dataset of 30 breast primary tumors (10 tumors exposed to hydroxyprogesterone and 20 tumors as control) were re-analyzed to identify differentially expressed non-coding RNAs followed by real-time PCR analyses to validate the expression of candidates. Functional analyses were performed by genetic knockdown, biochemical, and cell-based assays. RESULTS: We identified a significant downregulation in the expression of a long non-coding RNA, Down syndrome cell adhesion molecule antisense DSCAM-AS1, in response to progesterone treatment in breast cancer. The progesterone-induced expression of DSCAM-AS1 could be effectively blocked by the knockdown of progesterone receptor (PR) or treatment of cells with mifepristone (PR-antagonist). We further show that knockdown of DSCAM-AS1 mimics the effect of progesterone in impeding cell migration and invasion in PR-positive breast cancer cells, while its overexpression shows an opposite effect. Additionally, DSCAM-AS1 sponges the activity of miR-130a that regulates the expression of ESR1 by binding to its 3'-UTR to mediate the effect of progesterone in breast cancer cells. Consistent with our findings, TCGA analysis suggests that high levels of miR-130a correlate with a tendency toward better overall survival in patients with breast cancer. CONCLUSION: This study presents a mechanism involving the DSCAM-AS1/miR-130a/ESR1 genomic axis through which progesterone impedes breast cancer cell invasion and migration. The findings highlight the utility of progesterone treatment in impeding metastasis and improving survival outcomes in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/genética , Progesterona/farmacología , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica
2.
J Biol Chem ; 293(50): 19263-19276, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337371

RESUMEN

Preoperative progesterone intervention has been shown to confer a survival benefit to breast cancer patients independently of their progesterone receptor (PR) status. This observation raises the question how progesterone affects the outcome of PR-negative cancer. Here, using microarray and RNA-Seq-based gene expression profiling and ChIP-Seq analyses of breast cancer cells, we observed that the serum- and glucocorticoid-regulated kinase gene (SGK1) and the tumor metastasis-suppressor gene N-Myc downstream regulated gene 1 (NDRG1) are up-regulated and that the microRNAs miR-29a and miR-101-1 targeting the 3'-UTR of SGK1 are down-regulated in response to progesterone. We further demonstrate a dual-phase transcriptional and post-transcriptional regulation of SGK1 in response to progesterone, leading to an up-regulation of NDRG1 that is mediated by a set of genes regulated by the transcription factor AP-1. We found that NDRG1, in turn, inactivates a set of kinases, impeding the invasion and migration of breast cancer cells. In summary, we propose a model for the mode of action of progesterone in breast cancer. This model helps decipher the molecular basis of observations in a randomized clinical trial of the effect of progesterone on breast cancer and has therefore the potential to improve the prognosis of breast cancer patients receiving preoperative progesterone treatment.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Progesterona/farmacología , Proteínas Serina-Treonina Quinasas/genética , Receptores de Progesterona/metabolismo , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Cancer Rep (Hoboken) ; 6(11): e1847, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37311575

RESUMEN

BACKGROUND: Breast cancer, the leading cancer type in women worldwide, is affected by reproductive and nonreproductive factors. Estrogen and progesterone influence the incidence and progression of breast cancer. The microbiome of the gut, a complex organ that plays a vital role in digestion and homeostasis, enhances availability of estrogen and progesterone in the host. Thus, an altered gut microbiome may influence the hormone-induced breast cancer incidence. This review describes the current understanding of the roles of gut microbiome in influencing the incidence and progression of breast cancer, with an emphasis on the microbiome-induced metabolism of estrogen and progesterone. RECENT FINDINGS: Microbiome has been recognized as a promising hallmark of cancer. Next-generation sequencing technologies have aided in rapid identification of components of the gut microbiome that are capable of metabolizing estrogen and progesterone. Moreover, studies have indicated a wider role of the gut microbiome in metabolizing chemotherapeutic and hormonal therapy agents and reducing their efficacy in patients with breast cancer, with a predominant effect in postmenopausal women. CONCLUSION: The gut microbiome and variations in its composition significantly alter the incidence and therapy outcomes of patients with breast cancer. Thus, a healthy and diverse microbiome is required for better response to anticancer therapies. Finally, the review emphasizes the requirement of studies to elucidate mechanisms that may aid in improving the gut microbiome composition, and hence, survival outcomes of patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Progesterona/metabolismo , Progesterona/uso terapéutico , Microbioma Gastrointestinal/fisiología , Incidencia , Estrógenos/metabolismo , Estrógenos/uso terapéutico , Esteroides/uso terapéutico
4.
Oncotarget ; 14: 660-667, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37395734

RESUMEN

A practice-changing, randomized, controlled clinical study established that preoperative hydroxyprogesterone administration improves disease-free and overall survival in patients with node-positive breast cancer. This research perspective summarizes evidences from our studies that preoperative hydroxyprogesterone administration may improve disease-free and overall survival in patients with node-positive breast cancer by modulating cellular stress response and negative regulation of inflammation. Non-coding RNAs, particularly DSCAM-AS1, play a regulatory role in this process, along with the upregulation of the kinase gene SGK1 and activation of the SGK1/AP-1/NDRG1 axis. Progesterone-induced modification of the progesterone receptor and estrogen receptor genomic binding pattern is also involved in orchestrating estrogen signaling in breast cancer, preventing cell migration and invasion, and improving patient outcomes. We also highlight the role of progesterone in endocrine therapy resistance, which could lead to novel treatment options for patients with hormone receptor-positive breast cancer and for those who develop resistance to traditional endocrine therapies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Progesterona/farmacología , Progesterona/uso terapéutico , Receptores de Progesterona/metabolismo , Transducción de Señal , Hidroxiprogesteronas/uso terapéutico
5.
Oncotarget ; 10(64): 6855-6869, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31839879

RESUMEN

The human transcriptional coactivator PC4 has numerous roles to play in the cell. Other than its transcriptional coactivation function, it facilitates chromatin organization, DNA damage repair, viral DNA replication, etc. Although it was found to be an essential protein in vivo, the importance of this multifunctional protein in the regulation of different cellular pathways has not been investigated in details, particularly in oncogenesis. In this study, PC4 downregulation was observed in a significant proportion of mammary tissues obtained from Breast cancer patient samples as well as in a subset of highly invasive and metastatic Breast cancer patient-derived cell lines. We have identified a miRNA, miR-29a which potentially reduce the expression of PC4 both in RNA and protein level. This miR-29a was found to be indeed overexpressed in a substantial number of Breast cancer patient samples and cell lines as well, suggesting one of the key mechanisms of PC4 downregulation. Stable Knockdown of PC4 in MCF7 cells induced its migratory as well as invasive properties. Furthermore, in an orthotopic breast cancer mice model system; we have shown that reduced expression of PC4 enhances the tumorigenic potential substantially. Absence of PC4 led to the upregulation of several genes involved in Epithelial to Mesenchymal Transition (EMT), indicating the possible mechanism of uniform tumour progression in the orthotropic mice. Collectively these data establish the role of PC4 in tumour suppression.

7.
Cell Oncol (Dordr) ; 40(4): 411-417, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28653288

RESUMEN

PURPOSE: Pre-operative progesterone treatment of breast cancer has been shown to confer survival benefits to patients independent of their progesterone receptor (PR) status. The underlying mechanism and the question whether such an effect can also be observed in PR negative breast cancer cells remain to be resolved. METHODS: We performed proteome profiling of PR-positive and PR-negative breast cancer cells in response to progesterone using a phospho-kinase array platform. Western blotting was used to validate the results. Cell-based phenotypic assays were conducted using PR-positive and PR-negative breast cancer cells to assess the effect of progesterone. RESULTS: We found that progesterone induces de-phosphorylation of 12 out of 43 kinases tested, which are mostly involved in cellular invasion and migration regulation. Consistent with this observation, we found through cell-based phenotypic assays that progesterone inhibits the invasion and migration of breast cancer cells independent of their PR status. CONCLUSION: Our results indicate that progesterone can inhibit breast cancer cell invasion and migration mediated by the de-phosphorylation of kinases. This inhibition appears to be independent of the PR status of the breast cancer cells. In a broader context, our study may provide a basis for an association between progesterone treatment and recurrence reduction in breast cancer patients, thereby providing a lead for modelling a randomized in vitro study.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Fosfotransferasas/metabolismo , Progesterona/farmacología , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica , Fosforilación/efectos de los fármacos , Progestinas/farmacología
8.
Cancer Biol Ther ; 18(10): 801-805, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28876975

RESUMEN

OBJECTIVE: Hormonal therapy is an important component of first line of treatment for breast cancer. Response to hormonal therapy is influenced by the progesterone receptor (PR)-status of breast cancer patients. However as an early effect, exposure to progesterone decreases expression of PR in breast cancer cells. An understanding of the mechanism underlying down-regulation of PR could help improve response to hormonal therapy. METHODS: We performed small RNA sequencing of breast cancer cells for identification of microRNAs targeting PR in response to progesterone treatment. Biochemical approaches were used to validate the findings in breast cancer cells. RESULTS: Analysis of small RNA sequencing of four breast cancer cell lines treated with progesterone revealed an up-regulation of miR-129-2 independent of the PR status of the cells. We show that miR-129-2 targets 3'UTR of PR to down-regulate its expression. Furthermore, inhibition of miR-129-2 expression rescues the down-regulation of PR in breast cancer cells. Also, the expression levels of miR-129-2 was observed to be elevated in patients with low expression of PR in the TCGA cohort (n = 359). CONCLUSION: miR-129-2 mediates down-regulation of PR in breast cancer cells in response to progesterone, while anti-miR-129-2 could potentiate PR expression levels among patients with inadequate PR levels. Thus, modulation of activity of miR-129-2 could stabilize PR expression and potentially improve response to hormonal therapy under adjuvant or neo-adjuvant settings.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , MicroARNs/metabolismo , Progesterona/farmacología , Progestinas/farmacología , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quimioterapia Adyuvante/métodos , Conjuntos de Datos como Asunto , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/antagonistas & inhibidores , Progesterona/uso terapéutico , Progestinas/uso terapéutico , Análisis de Secuencia de ARN
9.
Oncotarget ; 7(31): 50437-50449, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27391340

RESUMEN

BACKGROUND: Notch pathway plays a complex role depending on cellular contexts: promotes stem cell maintenance or induces terminal differentiation in potential cancer-initiating cells; acts as an oncogene in lymphocytes and mammary tissue or plays a growth-suppressive role in leukemia, liver, skin, and head and neck cancer. Here, we present a novel clinical and functional significance of NOTCH1 alterations in early stage tongue squamous cell carcinoma (TSCC). PATIENTS AND METHODS: We analyzed the Notch signaling pathway in 68 early stage TSCC primary tumor samples by whole exome and transcriptome sequencing, real-time PCR based copy number, expression, immuno-histochemical, followed by cell based biochemical and functional assays. RESULTS: We show, unlike TCGA HNSCC data set, NOTCH1 harbors significantly lower frequency of inactivating mutations (4%); is somatically amplified; and, overexpressed in 31% and 37% of early stage TSCC patients, respectively. HNSCC cell lines over expressing NOTCH1, when plated in the absence of attachment, are enriched in stem cell markers and form spheroids. Furthermore, we show that inhibition of NOTCH activation by gamma secretase inhibitor or shRNA mediated knockdown of NOTCH1 inhibits spheroid forming capacity, transformation, survival and migration of the HNSCC cells suggesting an oncogenic role of NOTCH1 in TSCC. Clinically, Notch pathway activation is higher in tumors of non-smokers compared to smokers (50% Vs 18%, respectively, P=0.026) and is also associated with greater nodal positivity compared to its non-activation (93% Vs 64%, respectively, P=0.029). CONCLUSION: We anticipate that these results could form the basis for therapeutic targeting of NOTCH1 in tongue cancer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Células Madre Neoplásicas/citología , Receptor Notch1/metabolismo , Neoplasias de la Lengua/metabolismo , Adulto , Anciano , Carcinoma de Células Escamosas/genética , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Exoma , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación , Células Madre Neoplásicas/patología , Receptor Notch1/genética , Transducción de Señal/genética , Fumar/efectos adversos , Esferoides Celulares/metabolismo , Neoplasias de la Lengua/genética , Transcriptoma , Adulto Joven
10.
F1000Res ; 4: 160, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27127615

RESUMEN

Molecular diagnostics has changed the way lung cancer patients are treated worldwide. Of several different testing methods available, PCR followed by directed sequencing and amplification refractory mutation system (ARMS) are the two most commonly used diagnostic methods worldwide to detect mutations at  KRAS exon 2 and  EGFR kinase domain exons 18-21 in lung cancer. Compared to ARMS, the PCR followed by directed sequencing approach is relatively inexpensive but more cumbersome to perform. Moreover, with a limiting amount of genomic DNA from clinical formalin-fixed, paraffin-embedded (FFPE) specimens or fine biopsies of lung tumors, multiple rounds of PCR and sequencing reactions often get challenging. Here, we report a novel and cost-effective single multiplex-PCR based method, CRE (for  Co-amplification of five  K RAS and  E GFR exons), followed by concatenation of the PCR product as a single linear fragment for direct sequencing. CRE is a robust protocol that can be adapted for routine use in clinical diagnostics with reduced variability, cost and turnaround time requiring a minimal amount of template DNA extracted from FFPE or fresh frozen tumor samples. As a proof of principle, CRE is able to detect the activating  EGFR L858R and T790M  EGFR mutations in lung cancer cell line and primary tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA