Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902152

RESUMEN

Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Adulto Joven , Humanos , Dinámicas Mitocondriales , Multiómica , Proteómica , Cardiomiopatía Hipertrófica/genética , Miocitos Cardíacos/metabolismo , Mutación , Células Madre Pluripotentes Inducidas/metabolismo
4.
J Virol ; 95(19): e0086221, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260266

RESUMEN

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Asunto(s)
COVID-19/metabolismo , Interacciones Microbiota-Huesped/fisiología , Quinasas Janus/metabolismo , SARS-CoV-2/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Janus Quinasa 1/metabolismo , Miocitos Cardíacos , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , TYK2 Quinasa/metabolismo , Replicación Viral
5.
Mol Cell Proteomics ; 17(5): 925-947, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496907

RESUMEN

SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.


Asunto(s)
Fosfoproteínas/metabolismo , Proteómica/métodos , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Cromatografía de Afinidad , Simulación por Computador , Secuencia de Consenso , Proteínas de Unión al ADN/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Espectrometría de Masas , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Análisis por Matrices de Proteínas , Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos , Vimentina/metabolismo , Familia-src Quinasas/química
6.
BMC Cancer ; 19(1): 78, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651078

RESUMEN

BACKGROUND: BRK is, a non-receptor tyrosine kinase, overexpressed in approximately 85% of human invasive ductal breast tumors. It is not clear whether BRK expression correlates with breast cancer subtypes, or the expression has prognostic or diagnostic significance. Herein, we investigated the correlation of BRK with any breast cancer subtypes and clinicopathological significance of BRK expression in breast cancer. METHODS: In this study, we examined BRK expression in 120 breast tumor samples and 29 breast cancer cell lines to explore the positive correlation between BRK and the expression of ERα. We used immunohistochemistry, RT-PCR, and immunoblotting to analyse our experimental samples. RESULT: We demonstrate that estrogen induces BRK gene and protein expression in ER+ breast cancer cells. Over-expression of ERα in the ER-negative breast cancer cell line increased BRK expression, and knock-down of ESR1 in MCF7 cells reduced BRK levels. Further, we provide evidence that BRK is regulated by ERα signaling and the presence of ER antagonists (tamoxifen and fulvestrant) reduce the expression of BRK in ER-positive breast cancer cells. Finally, we demonstrate that the overall survival of ER-positive breast cancer patients is poor when their cancers express high levels of BRK. CONCLUSION: Our data indicate that BRK is a prognostic marker for ER+ breast cancers and provide a strong rationale for targeting BRK to improve patients' survival.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Mama/patología , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Femenino , Fulvestrant/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
7.
Proteome Sci ; 16: 16, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140170

RESUMEN

BACKGROUND: The non-receptor tyrosine kinase, SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites) is a member of the BRK family kinases (BFKs) which represents an evolutionarily conserved relative of the Src family kinases (SFKs). Tyrosine kinases are known to regulate a number of cellular processes and pathways via phosphorylating substrate proteins directly and/or by partaking in signaling cross-talks leading to the indirect modulation of various signaling intermediates. In a previous study, we profiled the tyrosine-phosphoproteome of SRMS and identified multiple candidate substrates of the kinase. The broader cellular signaling intermediates of SRMS are unknown. METHODS: In order to uncover the broader SRMS-regulated phosphoproteome and identify the SRMS-regulated indirect signaling intermediates, we performed label-free global phosphoproteomics analysis on cells expressing wild-type SRMS. Using computational database searching and bioinformatics analyses we characterized the dataset. RESULTS: Our analyses identified 60 hyperphosphorylated (phosphoserine/phosphothreonine) proteins mapped from 140 hyperphosphorylated peptides. Bioinfomatics analyses identified a number of significantly enriched biological and cellular processes among which DNA repair pathways were found to be upregulated while apoptotic pathways were found to be downregulated. Analyses of motifs derived from the upregulated phosphosites identified Casein kinase 2 alpha (CK2α) as one of the major potential kinases contributing to the SRMS-dependent indirect regulation of signaling intermediates. CONCLUSIONS: Overall, our phosphoproteomics analyses identified serine/threonine phosphorylation dynamics as important secondary events of the SRMS-regulated phosphoproteome with implications in the regulation of cellular and biological processes.

8.
Cancer Metastasis Rev ; 35(2): 179-99, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27067725

RESUMEN

The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.


Asunto(s)
Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Aberraciones Cromosómicas , Modelos Animales de Enfermedad , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Mutación , Metástasis de la Neoplasia , Proteínas de Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transporte de Proteínas , Proteínas Tirosina Quinasas/química , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
9.
Biochim Biophys Acta ; 1856(1): 39-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25999240

RESUMEN

Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Neoplasias/genética , Oncogenes , Proteínas Tirosina Quinasas/genética , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Transcriptoma
10.
Curr Opin Struct Biol ; 88: 102880, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996623

RESUMEN

Co-fractionation mass spectrometry (CF-MS) uses biochemical fractionation to isolate and characterize macromolecular complexes from cellular lysates without the need for affinity tagging or capture. In recent years, this has emerged as a powerful technique for elucidating global protein-protein interaction networks in a wide variety of biospecimens. This review highlights the latest advancements in CF-MS experimental workflows including machine learning-guided analyses, for uncovering dynamic and high-resolution protein interaction landscapes with enhanced sensitivity, accuracy and throughput, enabling better biophysical characterization of endogenous protein complexes. By addressing challenges and emergent opportunities in the field, this review underscores the transformative potential of CF-MS in advancing our understanding of functional protein interaction networks in health and disease.

11.
FEBS Lett ; 598(4): 390-399, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105115

RESUMEN

Insulin-responsive vesicles (IRVs) deliver the glucose transporter Glut4 to the plasma membrane in response to activation of the insulin signaling cascade: insulin receptor-IRS-PI3 kinase-Akt-TBC1D4-Rab10. Previous studies have shown that Akt, TBC1D4, and Rab10 are compartmentalized on the IRVs. Although functionally significant, the mechanism of Akt association with the IRVs remains unknown. Using pull-down assays, immunofluorescence microscopy, and cross-linking, we have found that Akt may be recruited to the IRVs via the interaction with the juxtamembrane domain of the cytoplasmic C terminus of sortilin, a major IRV protein. Overexpression of full-length sortilin increases insulin-stimulated phosphorylation of TBC1D4 and glucose uptake in adipocytes, while overexpression of the cytoplasmic tail of sortilin has the opposite effect. Our findings demonstrate that the IRVs represent both a scaffold and a target of insulin signaling.


Asunto(s)
Insulina , Proteínas Proto-Oncogénicas c-akt , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo
12.
Heliyon ; 9(6): e16421, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251450

RESUMEN

SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.

13.
Nat Commun ; 13(1): 4043, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831314

RESUMEN

Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macromolecular networks on a proteome scale, but current methods are experimentally laborious, resource intensive and afford lesser quantitative accuracy. Here, we present a technically efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring and comparing, simultaneously, multi-protein assemblies across different experimental samples at a rate that is up to an order of magnitude faster than previous approaches. We apply mCF/MS to map the protein interaction landscape of non-transformed mammary epithelia versus breast cancer cells in parallel, revealing large-scale differences in protein-protein interactions and the relative abundance of associated macromolecules connected with cancer-related pathways and altered cellular processes. The integration of multiplexing capability within an optimized workflow renders mCF/MS as a powerful tool for systematically exploring physical interaction networks in a comparative manner.


Asunto(s)
Proteoma , Proteómica , Fraccionamiento Químico , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Flujo de Trabajo
14.
bioRxiv ; 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33140044

RESUMEN

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.

15.
Biomed Opt Express ; 10(2): 399-410, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800488

RESUMEN

Instruments that allow the detection of fluorescence signal are invaluable tools for biomedical and clinical researchers. The technique is widely used in cell biology to microscopically detect target proteins of interest in mammalian cells. Importantly, fluorescence microscopy finds major applications in cancer biology where cancer cells are chemically labelled for detection. However, conventional fluorescence detection instruments such as fluorescence imaging microscopes are expensive, not portable and entail potentially high maintenance costs. Here we describe the design, development and applicability of a low-cost and portable fluorometer for the detection of fluorescence signal emitted from a model breast cancer cell line, engineered to stably express the green fluorescent protein (GFP). This device utilizes a flashlight which works in the visible range as an excitation source and a photodiode as the detector. It also utilizes an emission filter to mainly allow the fluorescence signal to reach the detector while eliminating the use of an excitation filter and dichroic mirror, hence, making the device compact, low-cost, portable and lightweight. The custom-built sample chamber is fabricated with a 3D printer to house the detector circuitry. We demonstrate that the developed fluorometer is able to distinguish between the cancer cell expressing GFP and the control cell. The fluorometer we developed exhibits immense potential for future applicability in the selective detection of fluorescently-labelled breast cancer cells.

16.
Oncotarget ; 8(7): 11442-11459, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28077797

RESUMEN

The triple-negative breast cancer subtype is highly aggressive and has no defined therapeutic target. Fyn-related kinase (FRK) is a non-receptor tyrosine kinase, reported to be downregulated in breast cancer and gliomas, where it is suggested to have tumor suppressor activity. We examined the expression profile of FRK in a panel of 40 breast cancer cells representing all the major subtypes, as well as in 4 non-malignant mammary epithelial cell lines. We found that FRK expression was significantly repressed in a proportion of basal B breast cancer cell lines. We then determined the mechanism of suppression of FRK in FRK-low or negative cell lines. In silico analyses of the FRK promoter region led to the identification of at least 17 CpG sites. Bisulphite sequencing of the promoter region revealed that two of these sites were consistently methylated in FRK-low/negative cell lines and especially in the basal B breast cancer subtype. We further show that treatment of these cells with histone deacetylase inhibitors, Entinostat and Mocetinostat' promoted re-expression of FRK mRNA and protein. Further, using luciferase reporter assays, we show that both GATA3-binding protein FOG1 and constitutively active STAT5A increased the activity of FRK promoter. Together, our results present the first evidence that site-specific promoter methylation contributes to the repression of FRK more so in basal B breast cancers. Our study also highlights the potential clinical significance of targeting FRK using epigenetic drugs specifically in basal B breast cancers which are usually triple negative and very aggressive.


Asunto(s)
Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Neoplasias/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Islas de CpG/genética , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Proteínas de Neoplasias/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Proteínas Tirosina Quinasas/genética , Neoplasias de la Mama Triple Negativas/enzimología
17.
Oncotarget ; 8(68): 113034-113065, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29348886

RESUMEN

The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

18.
Cancer Biol Med ; 14(2): 109-120, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28607802

RESUMEN

Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death, motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed.

19.
Cancer Biol Med ; 14(2): 129-141, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28607804

RESUMEN

Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.

20.
PLoS One ; 9(2): e87684, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523872

RESUMEN

Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Genes Supresores de Tumor , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Fosforilación , Transducción de Señal , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA