Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur Respir J ; 45(5): 1258-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25745049

RESUMEN

In chronic obstructive pulmonary disease (COPD), epithelial changes and subepithelial fibrosis are salient features in conducting airways. Epithelial-to-mesenchymal transition (EMT) has been recently suggested in COPD, but the mechanisms and relationship to peribronchial fibrosis remain unclear. We hypothesised that de-differentiation of the COPD respiratory epithelium through EMT could participate in airway fibrosis and thereby, in airway obstruction. Surgical lung tissue and primary broncho-epithelial cultures (in air-liquid interface (ALI)) from 104 patients were assessed for EMT markers. Cell cultures were also assayed for mesenchymal features and for the role of transforming growth factor (TGF)-ß1. The bronchial epithelium from COPD patients showed increased vimentin and decreased ZO-1 and E-cadherin expression. Increased vimentin expression correlated with basement membrane thickening and airflow limitation. ALI broncho-epithelial cells from COPD patients also displayed EMT phenotype in up to 2 weeks of culture, were more spindle shaped and released more fibronectin. Targeting TGF-ß1 during ALI differentiation prevented vimentin induction and fibronectin release. In COPD, the airway epithelium displays features of de-differentiation towards mesenchymal cells, which correlate with peribronchial fibrosis and airflow limitation, and which are partly due to a TGF-ß1-driven epithelial reprogramming.


Asunto(s)
Desdiferenciación Celular , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Anciano , Obstrucción de las Vías Aéreas , Antígenos CD , Bronquios/citología , Cadherinas/metabolismo , Células Epiteliales/citología , Femenino , Fibronectinas/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Humanos , Técnicas In Vitro , Pulmón/patología , Masculino , Persona de Mediana Edad , Fenotipo , Mucosa Respiratoria/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
2.
Am J Respir Crit Care Med ; 190(5): 509-21, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25078120

RESUMEN

RATIONALE: The generation of protective secretory IgA relies on the epithelial polymeric immunoglobulin receptor (pIgR). pIgR expression is reduced in chronic obstructive pulmonary disease (COPD), but correlation to disease severity and underlying mechanisms remains unknown. OBJECTIVES: To address the hypothesis that pIgR down-regulation in COPD concerns severe disease in relation to aberrant programming of the bronchial epithelium. METHODS: Surgical lung tissue and primary bronchial epithelium (cultured in air-liquid interface, ALI) obtained from a large series of patients (n = 116) were studied for pIgR expression and regulation. MEASUREMENTS AND MAIN RESULTS: pIgR immunostaining in the bronchial epithelium is decreased in severe COPD. In contrast, pIgR transcription was up-regulated in smokers with or without COPD. In ALI (vs. submerged) cultures, pIgR expression was strongly induced, whereas pIgR expression and IgA-transcytosis capacity were decreased in cultures from subjects with severe COPD as compared with control subjects. In addition, COPD cultures released more transforming growth factor-ß1 (TGF-ß1), reflecting increased epithelial TGF-ß1 immunostaining in COPD lung tissue. Finally, besides inducing epithelial dedifferentiation, exogenous TGF-ß1 dose-dependently inhibited pIgR production, whereas pIgR increased on blockade of TGF-ß1 activity during ALI differentiation. CONCLUSIONS: pIgR down-regulation in COPD correlates with disease severity, and the bronchial epithelium reconstituted in vitro from these patients retains its aberrant imprinting for pIgR expression. This study also links pIgR down-regulation to TGF-ß-driven reprogramming of the bronchial epithelium, which results in impaired lung IgA immunity in patients with COPD.


Asunto(s)
Bronquios/metabolismo , Regulación hacia Abajo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Mucosa Respiratoria/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Anciano , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Índice de Severidad de la Enfermedad , Fumar/metabolismo , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA