Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Natl Compr Canc Netw ; 22(6)2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39151453

RESUMEN

Neuroblastoma has heterogenous clinical presentations that are reflected by several well-defined clinical factors and biomarkers. Combinations of these clinical and biologic prognostic factors have been used for decades to generate classifiers to stratify patients into risk groups (low, intermediate, and high), which in turn are used to inform and tailor treatment as reported in the new NCCN Clinical Practice Guidelines in Oncology for Neuroblastoma. Risk classification uses clinical features, such as age and tumor stage, along with the most significant prognostic tumor biomarkers, including histologic features (differentiation and mitosis-karyorrhexis index), MYCN amplification status, chromosomal copy number alterations (segmental or numerical), and ploidy (DNA content). Recent next-generation sequencing approaches have identified additional tumor-specific genetic factors that have potential roles as prognostic and predictive biomarkers. These emerging biomarkers include telomerase maintenance mechanisms, such as telomerase reverse transcription (TERT) expression and alternative lengthening of telomeres (ALT) status. Somatic alterations of genes, including mutations in the anaplastic lymphoma kinase gene ALK, detected in >10% of patients with newly diagnosed disease, have both prognostic and predictive roles in determining eligibility for targeted therapies (eg, ALK tyrosine kinase inhibitors). In addition to diagnostic tumor-derived biomarkers, significant effort is being directed toward identification of markers to predict response to chemotherapy and immunotherapies. With the increasing use of GD2-containing immunotherapy regimens, efforts are aimed at identifying host or tumor microenvironment immune correlatives that can serve as predictive biomarkers. Understanding the potential role of liquid biopsies as biomarkers during and following treatment, including sequential circulating tumor DNA or tumor-specific mRNA transcripts, is expected to enhance the ability to predict recurrences and also inform understanding of tumor evolution and therapy resistance. These and other emerging biomarkers will lead to refinement and optimization of future neuroblastoma risk classification systems.


Asunto(s)
Biomarcadores de Tumor , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/diagnóstico , Neuroblastoma/patología , Neuroblastoma/terapia , Biomarcadores de Tumor/genética , Medición de Riesgo/métodos , Pronóstico
2.
Pediatr Blood Cancer ; 71(10): e31205, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39010648

RESUMEN

BACKGROUND: Children with neuroblastoma receiving I-131 metaiodobenzylguanidine (MIBG) therapy require sedation-analgesia for strict radiation safety precautions during MIBG infusion and clearance. We evaluated the sedation-analgesia trends of patients undergoing MIBG therapy using the Pediatric Health Information System (PHIS) database. MATERIALS AND METHODS: Retrospective data from 476 patient encounters from the PHIS from 2010 to 2019. RESULTS: Total 240/476 (50.45%) children evaluated were under 6 years of age. Compared to 2010, in 2018 there was a decrease in benzodiazepine infusion use (60% vs. 40%, p < .04), as well as a decrease in use of opiate infusion (35% vs. 25%, p < .001). Compared to 2010, in 2018 we report an increase in the use of ketamine (from 5% to 10%, p < .002), as well as an increase in dexmedetomidine use (0% vs. 30%, p < .001). Dexmedetomidine was the most used medication in the 0-3 years age group compared to children older than 3 years of age (14.19% vs. 5.80%, p < .001). Opiate was the most used medication in children greater than 3 years compared to the 0-3-year age group (36.23 vs. 23.87, p < .05). CONCLUSION: Using PHIS data, we discovered considerable variability in the medications used for sedation in patients undergoing MIBG therapy. Although benzodiazepines and opioids were the most used agents, there was a trend toward decreasing use of benzodiazepines and opioids in these patients. Furthermore, there has been an increasing trend in the use of dexmedetomidine and ketamine.


Asunto(s)
3-Yodobencilguanidina , Bases de Datos Factuales , Unidades de Cuidado Intensivo Pediátrico , Neuroblastoma , Humanos , Preescolar , Lactante , Niño , Masculino , Femenino , Estudios Retrospectivos , Neuroblastoma/radioterapia , 3-Yodobencilguanidina/uso terapéutico , 3-Yodobencilguanidina/administración & dosificación , Adolescente , Recién Nacido , Analgesia/métodos , Analgesia/estadística & datos numéricos , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/administración & dosificación , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/uso terapéutico , Estudios de Seguimiento , Pronóstico , Radiofármacos/uso terapéutico , Radiofármacos/administración & dosificación
3.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA