Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(24): 9935-9943, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847283

RESUMEN

Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.


Asunto(s)
Anticuerpos Monoclonales , Rayos Ultravioleta , Anticuerpos Monoclonales/química , Espectroscopía de Resonancia Magnética , Fotólisis , Composición de Medicamentos , Estabilidad de Medicamentos , Luz
2.
Inorg Chem ; 63(20): 9084-9097, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38701516

RESUMEN

Photochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)2(pictz)]2+ (1) and [Ru(bpy)2(btzm)]2+ (2) (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.079 and 0.091, respectively) in acetonitrile solution to form cis-[Ru(bpy)2(NCMe)2]2+ (3) in both cases. Ligand-loss intermediates of the form [Ru(bpy)2(κ1-pictz or κ1-btzm)(NCCD3)]2+ are detected by 1H NMR spectroscopy and mass spectrometry. Photolysis of 1 yields three ligand-loss intermediates with monodentate pictz ligands, two of which form through simple decoordination of either the pyridine or triazole donor with subsequent solvent coordination (4-tz(N2) and 4-py, respectively). The third intermediate, shown to be able to form photochemically directly from 1, arises through linkage isomerism in which the monodentate pictz ligand is coordinated by the triazole N3 atom (4-tz(N3)) with a comparable ligand-loss intermediate with an N3-bound κ1-btzm ligand also observed for 2.

3.
Mol Pharm ; 20(6): 2951-2965, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146162

RESUMEN

Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.


Asunto(s)
Anticuerpos Monoclonales , Quimiometría , Humanos , Estabilidad Proteica , Anticuerpos Monoclonales/química , Desplegamiento Proteico , Conformación Proteica , Estabilidad de Medicamentos
4.
Nucleic Acids Res ; 47(4): 1987-2001, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30462297

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) transcribes a long noncoding polyadenylated nuclear (PAN) RNA, which promotes the latent to lytic transition by repressing host genes involved in antiviral responses as well as viral proteins that support the latent state. KSHV also expresses several early proteins including ORF57 (Mta), a member of the conserved multifunctional ICP27 protein family, which is essential for productive replication. ORF57/Mta interacts with PAN RNA via a region termed the Mta responsive element (MRE), stabilizing the transcript and supporting nuclear accumulation. Here, using a close homolog of KSHV ORF57 from herpesvirus saimiri (HVS), we determined the crystal structure of the globular domain in complex with a PAN RNA MRE, revealing a uracil specific binding site that is also conserved in KSHV. Using solution NMR, RNA binding was also mapped within the disordered N-terminal domain of KSHV ORF57, and showed specificity for an RNA fragment containing a GAAGRG motif previously known to bind a homologous region in HVS ORF57. Together these data located novel differential RNA recognition sites within neighboring domains of herpesvirus ORF57 homologs, and revealed high-resolution details of their interactions with PAN RNA, thus providing insight into interactions crucial to viral function.


Asunto(s)
Herpesvirus Humano 8/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Proteínas Reguladoras y Accesorias Virales/genética , Sitios de Unión/genética , Regulación Viral de la Expresión Génica , Herpesvirus Saimiriino 2/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Motivos de Nucleótidos/genética , ARN Mensajero/genética
5.
Mol Pharm ; 17(9): 3298-3313, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32609526

RESUMEN

Therapeutic peptides and proteins show enormous potential in the pharmaceutical market, but high costs in discovery and development are limiting factors so far. Single or multiple point mutations are commonly introduced in protein drugs to increase their binding affinity or selectivity. They can also induce adverse properties, which might be overlooked in a functional screen, such as a decreased colloidal or thermal stability, leading to problems in later stages of the development. In this study, we address the effect of point mutations on the stability of the 4.4 kDa antimicrobial peptide plectasin, as a case study. We combined a systematic high-throughput biophysical screen of the peptide thermal and colloidal stability using dynamic light scattering and differential scanning calorimetry with structure-based methods including small-angle X-ray scattering, analytical ultracentrifugation, and nuclear magnetic resonance spectroscopy. Additionally, we applied molecular dynamics simulations to link obtained protein stability parameters to the protein's molecular structure. Despite their predicted structural similarities, all four plectasin variants showed substantially different behavior in solution. We observed an increasing propensity of plectasin to aggregate at a higher pH, and the introduced mutations influenced the type of aggregation. Our strategy for systematically assessing the stability and aggregation of protein drugs is generally applicable and is of particular relevance, given the increasing number of protein drugs in development.


Asunto(s)
Mutación Puntual/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Biofisica/métodos , Rastreo Diferencial de Calorimetría/métodos , Dispersión Dinámica de Luz/métodos , Concentración de Iones de Hidrógeno , Péptidos/química , Péptidos/genética , Agregado de Proteínas/genética , Estabilidad Proteica/efectos de los fármacos
6.
Biochemistry ; 58(32): 3413-3421, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31314511

RESUMEN

Increased protein solubility is known to correlate with an increase in the proportion of lysine over arginine residues. Previous work has shown that the aggregation propensity of a single-chain variable fragment (scFv) does not correlate with its conformational stability or native-state protein-protein interactions. Here, we test the hypothesis that aggregation is driven by the colloidal stability of partially unfolded states, studying the behavior of scFv mutants harboring single or multiple site-specific arginine to lysine mutations in denaturing buffers. In 6 M guanidine hydrochloride (GdmCl) or 8 M urea, repulsive protein-protein interactions were measured for the wild-type and lysine-enriched (4RK) scFvs reflecting weakened short-range attractions and increased excluded volume. In contrast to the arginine-enriched mutant (7KR) scFv exhibited strong reversible association. In 3 M GdmCl, the minimum concentration at which the scFvs were unfolded, the hydrodynamic radius of 4RK remained constant but increased for the wild type and especially for 7KR. Studies of single-point arginine to lysine scFv mutants indicated that the observed aggregation propensity of arginine under denaturing conditions was nonspecific. Interestingly, one such swap generated a scFv with especially low aggregation rates under low/high ionic strengths and denaturing buffers; molecular modeling identified hydrogen bonding between the arginine side chain and main chain peptide groups, stabilizing the structure. The arginine/lysine ratio is not routinely considered in biopharmaceutical scaffold design or current amyloid prediction methods. This work therefore suggests a simple method for increasing the stability of a biopharmaceutical protein against aggregation.


Asunto(s)
Mutación , Agregado de Proteínas/genética , Desplegamiento Proteico , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
7.
Anal Chem ; 91(7): 4702-4708, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30801173

RESUMEN

Proteins frequently exist as high-concentration mixtures, both in biological environments and increasingly in biopharmaceutical co-formulations. Such crowded conditions promote protein-protein interactions, potentially leading to formation of protein clusters, aggregation, and phase separation. Characterizing these interactions and processes in situ in high-concentration mixtures is challenging due to the complexity and heterogeneity of such systems. Here we demonstrate the application of the dark-state exchange saturation transfer (DEST) NMR technique to a mixture of two differentially 19F-labeled 145 kDa monoclonal antibodies (mAbs) to assess reversible temperature-dependent formation of small and large protein-specific clusters at concentrations up to 400 mg/mL. 19F DEST allowed quantitative protein-specific characterization of the cluster populations and sizes for both mAbs in the mixture under a range of conditions. Additives such as arginine glutamate and NaCl also had protein-specific effects on the dark-state populations and cluster characteristics. Notably, both mAbs appear to largely exist as separate self-associated clusters, which mechanistically respond differently to changes in solution conditions. We show that for mixtures of differentially 19F-labeled proteins DEST NMR can characterize clustering in a protein-specific manner, offering unique tracking of clustering pathways and a means to understand and control them.


Asunto(s)
Anticuerpos Monoclonales/análisis , Resonancia Magnética Nuclear Biomolecular , Análisis por Conglomerados , Flúor/química , Temperatura
8.
Mol Pharm ; 16(7): 3100-3108, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31088082

RESUMEN

Colloidal stability is among the key challenges the pharmaceutical industry faces during the production and manufacturing of protein therapeutics. Self-association and aggregation processes can not only impair therapeutic efficacy but also induce immunogenic responses in patients. Aggregation-prone regions (APRs) consisting of hydrophobic patches are commonly identified as the source for colloidal instability, and rational strategies to mitigate aggregation propensity often require genetic engineering to eliminate hydrophobic amino acid residues. Here, we investigate cucurbit[7]uril (CB[7]), a water-soluble macrocycle able to form host-guest complexes with aromatic amino acid residues, as a potential excipient to mitigate protein aggregation propensity. Two monoclonal antibodies (mAbs), one harboring an APR and one lacking an APR, were first assessed for their colloidal stability (measured as the translational diffusion coefficient) in the presence and absence of CB[7] using dynamic light scattering. Due to the presence of a tryptophan residue within the APR, we were able to monitor changes in intrinsic fluorescence in response to increasing concentrations of CB[7]. Isothermal titration calorimetry and NMR spectroscopy were then used to characterize the putative host-guest interaction. Our results suggest a stabilizing effect of CB[7] on the aggregation-prone mAb, due to the specific interaction of CB[7] with aromatic amino acid residues located within the APR. This provides a starting point for exploring CB[7] as a candidate excipient for the formulation of aggregation-prone mAbs.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Excipientes/química , Excipientes/metabolismo , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/metabolismo , Aminoácidos/metabolismo , Sitios de Unión de Anticuerpos , Calorimetría , Coloides/química , Composición de Medicamentos , Estabilidad de Medicamentos , Dispersión Dinámica de Luz , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Unión Proteica , Solubilidad , Agua/química
9.
Analyst ; 144(4): 1401-1408, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30601476

RESUMEN

Here, we applied NMR spectroscopy in combination with chemometrics to quantify the adulteration of fresh coconut water, stretched with water-sugar mixtures. Coconut water was extracted from young Costa Rican coconuts and adulterated with concentrations of various sugar solutions. A total of 45 samples were analysed by 1D proton NMR spectroscopy and chemometrics. Results showed highly sensitive quantification, with a limit of detection of adulteration with sugars of 1.3% and a root-mean-squared error of prediction of 0.58%. Interestingly, we identified a regular drift in the chemical shift and a change in the lineshape of malic acid signals concomitant with increasing levels of adulteration. On further investigation, this was found to originate from changes in the concentration of divalent cations, such as magnesium, within the samples. It can be concluded that 1H NMR spectroscopy enables accurate quantification for the degree of adulteration in this product, with the added discovery finding that the shift and lineshape of the malic acid signal can be utilised as a potential diagnostic marker for partial substitution of fresh coconut water with extrinsic components such as sugar mixtures.


Asunto(s)
Cocos/química , Calidad de los Alimentos , Fraude/prevención & control , Informática , Agua/química , Espectroscopía de Resonancia Magnética , Malatos/química
10.
Nucleic Acids Res ; 45(13): 8064-8078, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28505309

RESUMEN

The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
11.
Mol Pharm ; 15(7): 2785-2796, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29863878

RESUMEN

The ability to monitor the behavior of individual proteins in complex mixtures has many potential uses, ranging from analysis of protein interactions in highly concentrated solutions, modeling biological fluids or the intracellular environment, to optimizing biopharmaceutical co-formulations. Differential labeling NMR approaches, which traditionally use 15N or 13C isotope incorporation during recombinant expression, are not always practical in cases when endogenous proteins are obtained from an organism, or where the expression system does not allow for efficient labeling, especially for larger proteins. This study proposes differential labeling of proteins by covalent attachment of 19F groups with distinct chemical shifts, giving each protein a unique spectral signature which can be monitored by 19F NMR without signal overlap, even in complex mixtures, and without any interfering signals from the buffer or other unlabeled components. Parameters, such as signal intensities, translational diffusion coefficients, and transverse relaxation rates, which report on the behavior of individual proteins in the mixture, can be recorded even for proteins as large as antibodies at a wide range of concentrations.


Asunto(s)
Flúor/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Mezclas Complejas/química , Mezclas Complejas/metabolismo , Proteínas/metabolismo
12.
J Biol Chem ; 291(4): 1703-1718, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26565026

RESUMEN

The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína Son Of Sevenless Drosofila/química , Proteína Son Of Sevenless Drosofila/metabolismo , Sitio Alostérico , Dominio Catalítico , Fluorescencia , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Son Of Sevenless Drosofila/genética
13.
Mol Pharm ; 14(8): 2852-2860, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28614662

RESUMEN

Liquid-liquid phase separation (LLPS) of monoclonal antibody (mAb) formulations involves spontaneous separation into dense (protein-rich) and diluted (protein-lean) phases and should be avoided in the final drug product. Understanding the factors leading to LLPS and ways to predict and prevent it would therefore be highly beneficial. Here we describe the link between LLPS behavior of an IgG1 mAb (mAb5), its solubility, and parameters extracted using 1H NMR spectroscopy, for various formulations. We show that the formulations demonstrating least LLPS lead to the largest mAb5 NMR signal intensities. In the formulations exhibiting the highest propensity to phase-separate the mAb NMR signal intensities are the lowest, even at higher temperatures without visible phase separation, suggesting a high degree of self-association prior to distinct phase separation. Addition of arginine glutamate prevented LLPS and led to a significant increase in the observed mAb signal intensity, whereas the effect of arginine hydrochloride was only marginal. Solution NMR spectroscopy was further used to characterize the protein-lean and protein-rich phases separately and demonstrated that protein self-association in the protein-rich phase can be significantly reduced by arginine glutamate. Solution NMR spectroscopy may be useful as a tool to assess the propensity of mAb solutions to phase-separate.


Asunto(s)
Anticuerpos Monoclonales/química , Arginina/química , Dipéptidos/química , Espectroscopía de Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno
14.
PLoS Pathog ; 10(2): e1003907, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550725

RESUMEN

The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Parásitos/fisiología , Proteínas Nucleares/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Infecciones Tumorales por Virus/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Herpesvirus Saimiriino 2/química , Herpesvirus Saimiriino 2/metabolismo , Herpesvirus Saimiriino 2/patogenicidad , Humanos , Proteínas Nucleares/química , Estructura Cuaternaria de Proteína , Transporte de ARN/fisiología , ARN Viral/análisis , Proteínas de Unión al ARN/química , Proteínas Represoras/química , Transactivadores/química , Factores de Transcripción/química
15.
J Virol ; 87(13): 7210-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23637401

RESUMEN

Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Chlorocebus aethiops , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Inmunoprecipitación , Hibridación in Situ , Análisis por Micromatrices , Mutagénesis , Células Vero
16.
Chem Commun (Camb) ; 60(8): 1012-1015, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38170515

RESUMEN

Illumination into an electron paramagnetic resonance (EPR) spectrometer is commonly carried out through the optical window, perpendicular to the sample and magnetic field. Here we show that significant improvements can be obtained by using the walls of the EPR tube as a light guide, with the light scattered only around the sample-containing area.

17.
PLoS Pathog ; 7(1): e1001244, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253573

RESUMEN

The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Exodesoxirribonucleasas/metabolismo , Herpesvirus Humano 1/genética , Humanos , Proteínas Inmediatas-Precoces/química , Datos de Secuencia Molecular , Fosfoproteínas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Viral/química , Proteínas Represoras/química , Transactivadores/química
18.
Chem Soc Rev ; 41(17): 5706-27, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22729179

RESUMEN

Major food adulteration and contamination events seem to occur with some regularity, such as the widely publicised adulteration of milk products with melamine and the recent microbial contamination of vegetables across Europe for example. With globalisation and rapid distribution systems, these can have international impacts with far-reaching and sometimes lethal consequences. These events, though potentially global in the modern era, are in fact far from contemporary, and deliberate adulteration of food products is probably as old as the food processing and production systems themselves. This review first introduces some background into these practices, both historically and contemporary, before introducing a range of the technologies currently available for the detection of food adulteration and contamination. These methods include the vibrational spectroscopies: near-infrared, mid-infrared, Raman; NMR spectroscopy, as well as a range of mass spectrometry (MS) techniques, amongst others. This subject area is particularly relevant at this time, as it not only concerns the continuous engagement with food adulterers, but also more recent issues such as food security, bioterrorism and climate change. It is hoped that this introductory overview acts as a springboard for researchers in science, technology, engineering, and industry, in this era of systems-level thinking and interdisciplinary approaches to new and contemporary problems.


Asunto(s)
Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Animales , Humanos , Análisis Espectral
19.
J Pharm Sci ; 112(2): 404-410, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257338

RESUMEN

Surfactants are commonly used in biopharmaceutical formulations to stabilize proteins against aggregation. However, the choice of a suitable surfactant for a particular protein is decided mostly empirically, and their mechanism of action on molecular level is largely unknown. Here we show that a straightforward label-free method, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, can be used to detect protein-surfactant interactions in formulations of a model protein, interferon alpha. We find that polysorbate 20 binds with its fatty acid to interferon, and that the binding is stronger at pH closer to the isoelectric point of the protein. In contrast, we did not detect interactions between poloxamer 407 and interferon alpha. Neither of the two surfactants affected the tertiary structure and the thermal stability of the protein as evident from circular dichroism and nanoDSF measurements. Interestingly, both surfactants inhibited the formation of subvisible particles during long-term storage, but only polysorbate 20 reduced the amount of small soluble aggregates detected by size-exclusion chromatography. This proof-of-principle study demonstrates how STD-NMR can be employed to quickly assess surfactant-protein interactions and support the choice of surfactant in protein formulation.


Asunto(s)
Polisorbatos , Tensoactivos , Tensoactivos/química , Polisorbatos/química , Interferón-alfa , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química
20.
Chem Commun (Camb) ; 59(78): 11692-11695, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37698544

RESUMEN

Fluorine is becoming increasingly prevalent in medicinal chemistry, both in drug molecules and in molecular probes. The presence of fluorine allows convenient monitoring of such molecules in complex environments by NMR spectroscopy. However, sensitivity is a persistent limitation of NMR, especially when molecules are present at low concentrations. Here, sensitivity issues with 1H NMR are mitigated by sharing 19F photochemically-induced dynamic nuclear polarisation with 1H nuclei. Unlike direct 1H enhancement, this method enhances 1H signals without significantly distorting multiplet intensities, and has the potential to enable the use of suitable molecules as low-concentration probes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA