Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 580(7803): 413-417, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296173

RESUMEN

Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores that scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophore, lipid-bound mycobactin and water-soluble carboxymycobactin2,3. Functional studies have revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ATP binding cassette (ABC) transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain5. However, the predicted ABC exporter fold of IrtAB is seemingly contradictory to its import function. Here we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the siderophore interaction domain to facilitate iron release. Structure determination by X-ray crystallography and cryo-electron microscopy not only confirms that IrtAB has an ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB that result in a partially collapsed inward-facing substrate-binding cavity. The siderophore interaction domain is positioned in close proximity to the inner membrane leaflet, enabling the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB has a preference for mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore-import machinery in mycobacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Sideróforos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
2.
EMBO Rep ; 23(4): e54199, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253970

RESUMEN

The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales/metabolismo , Resistencia a Medicamentos , Humanos , Pandemias , Unión Proteica , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Cell Microbiol ; 22(5): e13163, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945239

RESUMEN

Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.


Asunto(s)
Mycobacterium marinum/metabolismo , Oxazoles/metabolismo , Fagocitos/metabolismo , Sideróforos/biosíntesis , Acanthamoeba castellanii/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Espectrometría de Masas , Ratones , Mycobacterium marinum/genética , Mycobacterium tuberculosis , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Células RAW 264.7 , Sideróforos/genética , Transcriptoma , Vacuolas/metabolismo
4.
Nat Commun ; 14(1): 6449, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833269

RESUMEN

Mycobacterium tuberculosis is protected from antibiotic therapy by a multi-layered hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue, which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity suitable for lipid transport is constricted by a functionally important ion-lock likely involved in proton coupling. Combining mutational analyses and MD simulations, we propose that TAGs are extracted from the core of the inner membrane into the central cavity via lateral clefts present in the inward-facing conformation. The functional role of the periplasmic helix extensions is to channel the extracted TAG into the lipid binding pocket of LprG.


Asunto(s)
Proteínas de Transporte de Membrana , Mycobacterium tuberculosis , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transporte Biológico , Membranas/metabolismo , Lípidos , Conformación Proteica
5.
J Pharm Biomed Anal ; 138: 322-329, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28242573

RESUMEN

Biorelevant, isomer-specific physicochemical parameters of resveratrol, a multifunctional component in red wines, with cardioprotective, anti-Alzheimer and several other pharmacologic activities were determined. The parameters include site-specific basicities, lipophilicities, solubilities and diffusion constants for the two geometric isomers. The protonation equilibria of (E)- and (Z)-resveratrol were monitored by 1H NMR-pH titrations. Five closely related auxiliary compounds ((E)-pinostilbene, (Z)-pinostilbene, (E)-pterostilbene, (Z)-pterostilbene and resorcinol) were also studied. Combining the datasets, the group-specific protonation constants of resveratrol isomers were determined. The results show that (Z)-resveratrol is more basic at every protonation site than the (E)-isomer. Lipophilicities are quantified in terms of logP values and were determined by octanol/water partition experiments and quantitative NMR spectroscopy: (E)-resveratrol was found to be more lipophilic. Since the molecular geometries of the isomers differ, diffusion ordered NMR spectroscopy (DOSY) experiments were also carried out to quantify the diffusion capabilities of the isomers: (Z)-resveratrol of bent shape has a slightly higher diffusion coefficient than its extended (E) counterpart. A striking 10-fold difference of water solubility was found in favor of the (Z) isomer, due obviously to the reduced water-repellent character in the more compact molecule. This is so far the greatest recorded solubility difference between geometric isomers of any compounds.


Asunto(s)
Estilbenos/química , Concentración de Iones de Hidrógeno , Isomerismo , Espectroscopía de Resonancia Magnética/métodos , Octanoles/química , Resveratrol , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA