RESUMEN
Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.
Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Aminas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/metabolismoRESUMEN
Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.
RESUMEN
Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.
Asunto(s)
Apnea Obstructiva del Sueño , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/patología , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Hipoxia/metabolismoRESUMEN
BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.
Asunto(s)
Enfermedades de la Aorta , Disección Aórtica , Benzofenonas , Isoxazoles , Enfermedades Vasculares , Humanos , Factor de Transcripción AP-1 , Aminopropionitrilo , Estudios Transversales , Disección Aórtica/genética , Enfermedades de la Aorta/patología , Enfermedades Vasculares/patología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Factores de Necrosis TumoralRESUMEN
Two-dimensional (2D) FenGeTe2, with n = 3, 4, and 5, has been realized in experiments, showing strong magnetic anisotropy with enhanced critical temperature (Tc). The understanding of its magnetic anisotropy is crucial for the exploration of more stable 2D magnets and its spintronic applications. Here, we report a quantitative reconstruction of the magnetization magnitude and its direction in ultrathin Fe4GeTe2 using nitrogen vacancy centers. Through imaging stray magnetic fields, we identified the spin-flop transition at approximately 80 K, resulting in a change of the easy axis from the out-of-plane direction to the in-plane direction. Moreover, by analyzing the thermally activated escape behavior of the magnetization near Tc in terms of the Ginzburg-Landau model, we observed the in-plane magnetic anisotropy effect and the formation capability of magnetic domains at â¼0.4 µm2 µT-1. Our findings contribute to the quantitative understanding of the magnetic anisotropy effect in a vast range of 2D van der Waals magnets.
RESUMEN
Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.
Asunto(s)
Hipertensión , ATPasas de Translocación de Protón Vacuolares , Masculino , Humanos , Femenino , Ratones , Animales , Angiotensina II/farmacología , Receptor de Prorenina , Riñón/metabolismo , Sistema Renina-Angiotensina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Renina/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
Endometrial decidualization is critical for successful embryo implantation. Dysregulation of the immune microenvironment can disrupt normal decidualization processes, potentially resulting in early pregnancy loss. Ferroptosis, a form of cell death dependent on iron and lipid hydroperoxides, is closely associated with inflammation. In this study, we developed an inflammatory early pregnancy loss model to elucidate the mechanisms of decidual damage induced by lipopolysaccharide (LPS) and to assess whether ferroptosis contributes to LPS-induced early pregnancy loss. Through in vivo experiments, we observed that embryo implantation was significantly inhibited and endometrial decidualization was impaired during LPS-induced early pregnancy loss. LPS exposure resulted in abnormal mitochondrial morphology, reduced antioxidant capacity, accumulation of reactive oxygen species (ROS) and disruptions in iron metabolism during decidualization in mouse endometrial stromal cells (mESCs). The administration of ferroptosis inhibitors, specifically ferrostatin-1 (Fer-1) and deferoxamine (DFO), effectively reversed embryo loss and mitigated the decidual damage associated with LPS-induced early pregnancy loss. Fer-1 and DFO exhibited resistance to ferroptosis during decidualization by modulating the antioxidant system and iron metabolism in mESCs, respectively. Our findings indicate that the inhibition of ferroptosis can confer protective effects against decidual damage during LPS-induced early pregnancy loss in mice.
RESUMEN
The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.
RESUMEN
With the rapid development of superconducting quantum computing and the implementation of surface code, large-scale quantum computing is emerging as an urgent demand. In a superconducting computing system, the qubit is maintained in a cryogenic environment to avoid thermal excitation. Thus, the transmission of control signals, which are generated at room temperature, is needed. Typically, the transmission of these signals to the qubit relies on a coaxial cable wiring approach. However, in a large-scale computing system with hundreds or even thousands of qubits, the coaxial cables will pose great space and heat load to the dilution refrigerator. Here, to tackle this problem, we propose and demonstrate a direct-modulation-based optical transmission line. In our experiment, the average single-qubit XEB error and control error are measured as 0.139% and 0.014% separately, demonstrating the feasibility of the optical wiring approach and paving the way for large-scale superconducting quantum computing.
RESUMEN
5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.
Asunto(s)
Apoptosis , Peróxido de Hidrógeno , Miocitos Cardíacos , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Raíces de Plantas , Proteínas Proto-Oncogénicas c-akt , Miocitos Cardíacos/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Línea Celular , Transducción de Señal/efectos de los fármacos , Caspasa 9/metabolismoRESUMEN
The quantity and quality of food intake have been considered crucial for peoples' wellness. Only recently has it become appreciated that the timing of food intake is also critical. Nondipping blood pressure (BP) is prevalent in diabetic patients and is associated with increased cardiovascular events. However, the causes and mechanisms of nondipping BP in diabetes are not fully understood. Here, we report that food intake and BP were arrhythmic in diabetic db/db mice fed a normal chow diet ad libitum. Imposing a food intake diurnal rhythm by time-restricted feeding (TRF; food was only available for 8 h during the active phase) prevented db/db mice from developing nondipping BP and effectively restored the already disrupted BP circadian rhythm in db/db mice. Interestingly, increasing the time of food availability from 8 h to 12 h during the active dark phase in db/db mice prompted isocaloric feeding and still provided robust protection of the BP circadian rhythm in db/db mice. In contrast, neither 8-h nor 12-h TRF affected BP dipping in wild-type mice. Mechanistically, we demonstrate that TRF protects the BP circadian rhythm in db/db mice via suppressing the sympathetic activity during the light phase when they are inactive and fasting. Collectively, these data reveal a potentially pivotal role of the timing of food intake in the prevention and treatment of nondipping BP in diabetes.
Asunto(s)
Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Diabetes Mellitus Experimental/fisiopatología , Ayuno/fisiología , Animales , Ingestión de Energía , Ratones , Sistema Nervioso Simpático/fisiopatología , Factores de TiempoRESUMEN
BACKGROUND: Wu et al. introduced a modified radiographic system that allows classification of all forms of CTD with excellent interobserver and intraobserver reliability. No study to date has evaluated the radiographic characteristics of Wu et al. type C3 CTD with osseous attachment at the level of the metacarpal. OBJECTIVE: This study aimed to evaluate the radiographic features of type C3 CTD according to the system of Wu et al., to describe the different anatomical subtypes of the duplication, and to propose a categorization approach to distinguish diverse surgical strategies based on the radiographic anatomy of this specific subtype of duplication. METHODS: We performed a retrospective analysis of 215 patients (221 thumbs) diagnosed with Wu et al. type C3 CTD at our Institution between 2015 and 2021. We evaluated all CTDs by examining the alignment of the interphalangeal (IP) and metacarpophalangeal (MP) joints and by assessing the presence of abnormal hypertrophic epiphysis of the primary thumb on posteroanterior (PA) radiographs. The proposed classification system has four types: Type I with good alignment of both MP and IP joints, Type II with ulnar deviation of the MP joint, Type III with radial deviation in the MP joint and Type IV with abnormal hypertrophic epiphysis of the distal phalanx of the main thumb with ulnar deviation of the IP joint with or without ulnar deviation of the MP joint. RESULTS: There were 140 male and 75 female patients with CTD (221 thumbs). There were 65 left, 144 right and 6 bilateral forms. The right-to-left, male-to-female and unilateral-to-bilateral ratios were 2.2:1, 1.9:1 and 35.8:1 respectively. The mean age at surgery was 22.3 ± 11.8 months (range, 8-80). The proposed classification system allowed the classification of all CTDs (n = 221). Specifically, 53 fingers were classified as Type I (24%), 136 as Type II (61.5%), 21 as Type III (9.5%), and 11 as Type IV (5%). CONCLUSION: The proposed system is based on radiographic pathoanatomy and complements that of Wu et al. by identifying four distinct subtypes of deformity. It has the potential to improve inter-professional communication and guide surgery in patients with Wu et al. type C3 CTD. However, our results are preliminary and further research is needed to validate them. LEVEL OF EVIDENCE: III.
Asunto(s)
Pulgar , Humanos , Pulgar/anomalías , Pulgar/diagnóstico por imagen , Pulgar/cirugía , Femenino , Masculino , Estudios Retrospectivos , Niño , Preescolar , Lactante , Radiografía , Reproducibilidad de los Resultados , Deformidades Congénitas de la Mano/diagnóstico por imagen , Deformidades Congénitas de la Mano/clasificación , Deformidades Congénitas de la Mano/cirugía , Articulación Metacarpofalángica/diagnóstico por imagen , Articulación Metacarpofalángica/cirugía , Articulación Metacarpofalángica/anomalíasRESUMEN
Objective: Long-term antiviral treatment is necessary for chronic hepatitis B (CHB) patients, and treatment safety is imperative for these patients. Previous studies showed tenofovir alafenamide (TAF) has shown efficacy non-inferior to that of tenofovir disoproxil fumarate (TDF) with improved renal and bone safety. However, there is still a lack of a rapid and convenient method to identify CHB patients at high risk of osteoporosis before initiating antiviral treatment. The International Osteoporosis Foundation (IOF) recommended a one-minute osteoporosis risk test to identify early high-risk patients. Our aim was to evaluate the feasibility of the one-minute osteoporosis risk test, along with evaluating the effectiveness and safety for virologically suppressed CHB patients switching to TAF. Methods: In this multicenter, prospective study, patients with chronic HBV infection who had been receiving TDF or Entecavir (ETV) for 48 weeks or more with HBV DNA less than 20 IU/mL for longer than 6 months were screened by one-minute osteoporosis risk test. Patients with a high risk of osteoporosis and then diagnosed with osteopenia or osteoporosis by dual-energy X-ray absorptiometry (DEXA) were enrolled. Safety in bone and bone turnover markers and antiviral efficacy of TAF were assessed respectively at 24 and 48 weeks. Results: 84.95% (175/206) CHB patients screened by one-minute osteoporosis risk test were at risk of osteoporosis.85.71% (150/175) were diagnosed with osteopenia by DEXA. The analysis included a total of 138 patients, of whom 92(62.3%) were male and 46 (37.7%) were female, with a mean age of 45 years old. HBV DNA was suppressed at 48 weeks at 88% (35/40) in the prior ETV group and 90% (88/98) at 48 weeks group in the prior TDF group. Bone mineral density (BMD) of the lumbar spine (L1-L4) from TDF switching to TAF was improved at 24 weeks (1.03±0.11 vs. 0.97±0.12, P = .001) than baseline. Propeptides of type I procollagen (PINP) and beta-C-terminal telopeptides of type 1 collagen (CTX) in serum at 24 weeks after switching from TDF to TAF declined compared with baseline (50.35±18.90 vs. 63.65±19.17, P = .016 and 0.21±0.13 vs. 0.32±0.10, P = .017). BMD, PINP, and CTX in ETV to TAF group remained stable during treatment. Conclusion: Attention should be paid to osteoporosis risk during lone-term nucleot(s)ide analogue treatment. One minute test of osteoporosis risk could rapidly identify most CHB patients at risk of osteoporosis. Given its convenience, we recommend using this test for early screening in CHB patients prior to initiating antiviral treatment. Our results further demonstrated that an improvement in bone safety after switching to TAF in virologically suppressed CHB patients with osteoporosis.
Asunto(s)
Antivirales , Enfermedades Óseas Metabólicas , Hepatitis B Crónica , Osteoporosis , Tenofovir , Humanos , Femenino , Masculino , Tenofovir/uso terapéutico , Tenofovir/efectos adversos , Tenofovir/análogos & derivados , Persona de Mediana Edad , Osteoporosis/tratamiento farmacológico , Adulto , Antivirales/uso terapéutico , Antivirales/efectos adversos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Estudios Prospectivos , China/epidemiología , Alanina/uso terapéutico , Absorciometría de Fotón , Adenina/análogos & derivados , Adenina/uso terapéutico , Adenina/efectos adversos , Densidad Ósea/efectos de los fármacosRESUMEN
The organic electrolyte can resolve the hurdle of hydrogen evolution in aqueous electrolytes but suffers from sluggish electrochemical reaction kinetics due to a compromised mass transfer process. Herein, we introduce a chlorophyll, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl), as a multifunctional electrolyte additive for aprotic zinc batteries to address the related dynamic problems in organic electrolyte systems. The Chl exhibits multisite zincophilicity, which significantly reduces the nucleation potential, increases the nucleation sites, and induces uniform nucleation of Zn metal with a nucleation overpotential close to zero. Furthermore, the lower LUMO of Chl contributes to a Zn-N-bond-containing SEI layer and inhibits the decomposition of the electrolyte. Therefore, the electrolyte enables repeated zinc stripping/plating up to 2000 h (2 Ah cm-2 cumulative capacity) with an overpotential of only 32 mV and a high Coulomb efficiency of 99.4%. This work is expected to enlighten the practical application of organic electrolyte systems.
RESUMEN
Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.
Asunto(s)
Proteínas Arqueales , Clonación Molecular , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Caseínas , Dominio Catalítico , Estabilidad de Enzimas , Escherichia coli/genética , Halobacteriaceae/genética , Halobacteriaceae/enzimología , Halobacteriaceae/metabolismo , Calor , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Fluoruro de Fenilmetilsulfonilo/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cloruro de Sodio/metabolismo , Especificidad por Sustrato , TemperaturaRESUMEN
Tailoring the selectivity at the electrode-electrolyte interface is one of the greatest challenges for heterogeneous electrocatalysis, and complementary strategies to catalyst structural designs need to be developed. Herein, we proposed a new strategy of controlling the electrocatalytic pathways by lateral adsorbate interaction for the bio-polyol oxidation. Redox-innocent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) anion possesses the alcoholic property that facilely adsorbs on the nickel oxyhydroxide catalyst, but is resistant to oxidation due to the electron-withdrawing trifluoromethyl groups. The alien HFIP adsorbents can compete with bio-polyols and form a mixed adsorbate layer that creates lateral adsorbate interaction via hydrogen bonding, which achieved a >2-fold enhancement of the oxalate selectivity to 55 % for the representative glycerol oxidation and can be extended to various bio-polyol substrates. Through in situ spectroscopic analysis and DFT calculation on the glycerol oxidation, we reveal that the hydrogen-bonded adsorbate interaction can effectively tune the adsorption energies and tailor the oxidation capabilities toward the targeted products. This work offers an additional perspective of tuning electrocatalytic reactions via introducing redox-innocent adsorbates to create lateral adsorbate interactions.
RESUMEN
Maximizing the loadings of active centers without aggregation for a supported catalyst is a grand challenge but essential for achieving high gravimetric catalytic activity, especially toward multi-step reactions. The oxidation of 5-hydroxymethylfurfural (HMF), a key biomass-derived platform molecule, into 2,5-furandicarboxylic acid (FDCA), a promising alternative to polyester monomer, is such a multi-step reaction that involves 6 proton and electron transfers. This process often demands strong alkaline environment but also suffers from the alkali-driven polymerization side-reaction. Meanwhile, neutral media ameliorates the polymerization, but lacks efficient catalyst toward deep oxidation. Herein, we devised a strategy of creating ultra-dense supported Ru oxide clusters via directed ion exchange in a Co hydroxyanion (CoHA) support material. Pyrimidine ligands were first incorporated into the CoHA interlayers, and the subsequent evacuation of pyrimidines created porous channels for the directed ion exchange with the built-in anions in CoHA, which allowed the dense and mono-disperse functionalization of RuCl6 2- anions and their resulting Ru oxide clusters. These ultra-dense Ru oxide clusters not only enable high HMF electrooxidation currents under neutral conditions but also create microscopic channels in-between the clusters for the expedited re-adsorption and oxidation of intermediates toward highly oxidized product, such as 5-formyl-2-furoic acid (FFCA) and FDCA. A two-stage HMF oxidation process, consisting of ambient conversion of HMF into FFCA and FFCA oxidation into FDCA under 60 °C, was eventually developed to first achieve a high FDCA yield of 92.1 % under neutral media with significantly reduced polymerization.
RESUMEN
Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34â h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.
RESUMEN
Sustainable polymer production is essential for a carbon-neutral society. cis,cis-Muconic acid is attracting growing interest as a biomass-derived platform molecule with direct access to adipic acid and terephthalic acid, prominent monomers of commercial polymers. Here, a sustainable route of electro-reforming biorenewable catechol to cis,cis-muconic acid with concurrent H2 production has been proposed. By using a CuO foam electrode, a high cis,cis-muconate yield of 90% and a high faradaic efficiency of 87% can be achieved under ambient conditions without external oxidant. Zn2+ coordination with the catechol is central to the yield and selectivity. In a combinatory analysis via steady-state electrochemical kinetics, in situ spectroscopy, and theoretical calculation, we revealed that the reaction ensemble of catechol electrooxidation involves three major processes of polymerization, ring cleavage, and depolymerization, in which Zn2+ coordination is highly effective in delaying polymerization and promoting ring cleavage toward cis,cis-muconate. The catecholate coordinated to the Zn2+ cations reallocated its electron density with partial structural deformation to accelerate the electron transfer and facilitate the OH- nucleophilic attack. A practical two-electrode system was eventually demonstrated to efficiently and stably electro-reform catechol into isolable cis,cis-muconic acid and hydrogen, providing solutions for polymer sustainability via utilizing alternative biomass resources and electrified processes.
RESUMEN
Thermo-optic phase shifters (TOPSs) are commonly used in large-scale silicon photonic integrated optical phased arrays (OPAs). However, fast-response TOPSs consume relatively high power; the elevated temperature floor in the dense region of the TOPSs introduces thermal crosstalk between optical paths, which undermines the control accuracy. We propose a combined method that involves subarray design in the optical power distribution network and array control method to predict, optimize, and redistribute the phase shifts and mitigates thermal crosstalk. Thermal simulations and an array control method for generic OPA models are discussed. A silicon photonic chip prototype of a 4 × 4 OPA with three-level cascaded subarrays is fabricated to demonstrate the proposed method. The experimental and statistical results show that the method effectively reduces the average total power consumption by 31%, the maximum local temperature by 18.4%, and the thermal crosstalk within the OPA.