Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2310396, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607299

RESUMEN

Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.

2.
Helicobacter ; 29(3): e13091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780150

RESUMEN

BACKGROUND: Helicobacter pylori eradication failure influences its antibiotic resistance. AIMS: This study aimed to evaluate the effect of previous treatment failures on it, including the changes in the antibiotic resistance rates, minimal inhibitory concentration (MIC) distributions, and resistance patterns. MATERIALS AND METHODS: This single-center retrospective study included 860 primary isolates and 247 secondary isolates. Antibiotic susceptibility testing was performed for amoxicillin, metronidazole, clarithromycin, levofloxacin, furazolidone, tetracycline, and rifampicin. The demographic data and detailed regimens were collected. RESULTS: The primary resistance rates to amoxicillin, metronidazole, clarithromycin, levofloxacin, tetracycline, rifampin, and furazolidone were 5.93%, 83.84%, 28.82%, 26.28%, 0.35%, 1.16%, and 0%, while secondary were 25.10%, 92.31%, 79.76%, 63.16%, 1.06%, 3.19%, and 0%, respectively. The resistance rates to amoxicillin, metronidazole, clarithromycin, and levofloxacin increased significantly with the number of treatment failures accumulated, and showed a linear trend. The proportion of primary and secondary multidrug-resistant (MDR) isolates were 17.79% and 63.16%, respectively. The MIC values of amoxicillin, clarithromycin, and levofloxacin were elevated significantly with medication courses increased. CONCLUSION: The prevalence of amoxicillin, clarithromycin, levofloxacin, and metronidazole resistance would increase rapidly following first-line treatment failure, as well as the MIC values of them. Clinicians should pay great attention to the first-line treatment to cure H. pylori infection successfully.


Asunto(s)
Antibacterianos , Infecciones por Helicobacter , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Insuficiencia del Tratamiento , Humanos , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Farmacorresistencia Bacteriana , Adulto Joven , Adolescente , Anciano de 80 o más Años
3.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400243

RESUMEN

Computing resource measurement and computing routing are essential technologies in the computing first network (CFN), serving as its foundational elements. This paper introduces a Software Defined Computing First Network (SD-CFN) architecture. Building upon this framework, a Dynamic-Static Integrated Computing Resource Measurement Mechanism (DCRMM) is proposed, incorporating methods such as the entropy weight method and K-Means clustering. The DCRMM algorithm outperforms the Maximum-closest Static Algorithm (MSA) and Maximum Closest Dynamic Algorithm (MDA) in terms of node stability, node utilization, and node matching accuracy. Additionally, a Reinforcement Learning and Software Defined Computing First Networking Routing (RSCR) algorithm is presented as a software-defined computing routing solution within the SD-CFN. RSCR introduces a knowledge plane responsible for computing routing calculations. It comprehensively considers factors such as link latency, available bandwidth, and packet loss rate. Simulation experiments conducted on the GÉANT topology demonstrate that RSCR outperforms the OSPF algorithm in terms of link latency, packet loss rate, and throughput. DCRMM and RSCR offer innovative solutions for computing resource measurement and computing routing in computing first networks.

4.
Planta ; 257(2): 35, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36624317

RESUMEN

MAIN CONCLUSION: This review proposed that phytoremediation could be applied for the decontamination of MPs/NPs. Micro- and nano-plastics (MPs < 5 mm; NPs < 100 nm) are emerging contaminants. Much of the recent concerns have focused on the investigation of their pollution and their potential eco-toxicity. Yet little review was available on the decontamination of MPs/NPs. Recently, the uptake of MPs/NPs by plants has been confirmed. Here, in view of the current knowledge, this review introduces MPs/NPs pollution and highlights the updated information about the interaction between MPs/NPs and plants. This review proposed that phytoremediation could be a potential possible way for the in situ remediation of MPs/NPs-contaminated environment. The possible mechanisms, influencing factors, and existing problems are summarized, and further research needs are proposed. This review herein provides new insights into the development of plant-based process for emerging pollutants decontamination, as well as the alleviation of MPs/NPs-induced toxicity to the ecosystem.


Asunto(s)
Contaminantes Ambientales , Microplásticos , Biodegradación Ambiental , Ecosistema , Transporte Biológico
5.
Helicobacter ; 28(6): e13011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661590

RESUMEN

BACKGROUND: Cancer immunotherapy has shown promising results in several tumors, but its efficacy is influenced by the immune state of the body. Helicobacter pylori (H. pylori) infection can modulate the immune function of the body through various pathways, ultimately affecting the effectiveness of cancer immunotherapy. AIM: In this meta-analysis, we aimed to explore the association between H. pylori infection and the efficacy of cancer immunotherapy. METHODS: We conducted a comprehensive search of PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials to identify relevant articles. We extracted and pooled the hazard ratio (HR) of the overall survival (OS) and progression-free survival (PFS) by Review Manager 5.4. RESULTS: Our analysis included four studies with a total of 263 participants. Compared to the control group, patients receiving cancer immunotherapy with H. pylori infection had a shorter OS (HR = 2.68, 95% CI: 2.00-4.11, p < 0.00001) and PFS (HR = 2.25, 95% CI: 1.66-3.60, p < 0.00001). CONCLUSION: Our meta-analysis suggested that H. pylori infection has a detrimental effect on cancer immunotherapy.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/complicaciones , Inmunoterapia/métodos
6.
Ecotoxicol Environ Saf ; 262: 115137, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37320919

RESUMEN

Understanding the intricate interplay between Cd accumulation in plants and their rhizosphere micro-characteristics is important for the selection of plant species with profitable Cd phytoextraction and soil remediation efficiencies. This study investigated the differences in rhizosphere micro-ecological characteristics and Cd accumulation in chicory, Ixeris polycephala, sunflower, and Sedum alfredii in low-moderate Cd-contaminated soil. Data reveal that the dominant organic acids in rhizosphere soil that responded to Cd were oxalic and lactic acids in chicory and Ixeris polycephala, tartaric acid in sunflower, and succinic acid in Sedum alfredii. These unique organic acids could also influence the abundance of specific rhizobacterial communities in rhizosphere soil that were Sphingomonadaceae and Bradyrhizobiaceae in both Sedum alfredii (9.75 % and 2.56 %, respectively) and chicory (8.98 % and 2.82 %, respectively) rhizosphere soil, Xanthomonadaceae in both Sedum alfredii and Ixeris polycephala rhizosphere soil, and Gaiellaceae in chicory rhizosphere soil. In this case, the combined effects of the organic acids and unique rhizobacterial communities by plant species increased the bioavailable concentration of Cd in Sedum alfredii, Ixeris polycephala, and sunflower rhizosphere soil, while decreasing the Cd-DOM concentrations in chicory rhizosphere soil and the water-extractable Cd reduced by 88.02 % compared to the control. Though the capacity for Cd accumulation in the shoots of chicory was weaker than of Sedum alfredii but better than either Ixeris polycephala or sunflower, chicory presented better Cd translocation and harbored Cd mainly as the low toxic chemical form of pectates and proteins-bound Cd and Cd oxalate in its shoot. Generally, chicory, as an economic plant, is suitable for phytoremediation of low-moderate Cd-contaminated soil after Sedum alfredii.

7.
J Environ Manage ; 344: 118545, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418928

RESUMEN

Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.


Asunto(s)
Contaminantes Ambientales , Agua
8.
Ecotoxicol Environ Saf ; 208: 111510, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120259

RESUMEN

Environment functional materials have been widely used, but whether their effects on the contaminated environment could facilitate phytoremediation is not yet well understood. In this study, starch stabilized nanoscale zerovalent iron (SN), multiwall carbon nanotubes (MW) and tea waste derived biochar (TB) were used to facilitate the phytoremediation of cadmium (Cd) contaminated sediments by Boehmeria nivea (L.) Gaudich. Results showed that 100 mg/kg SN, 500 mg/kg MW and 500 mg/kg TB facilitated phytoremediation, as evidenced by increasing Cd accumulation and/or promoting plant growth. These concentrations of materials increased the reducible fraction of Cd by 9-10% and decreased the oxidizable proportion of Cd by 48-52%, indicating the improvement of Cd bioavailability through converting the oxidizable Cd into reducible form. The activities of urease, phosphatase and catalase, which related to nutrient utilization and oxidative stress alleviation, increased by 20-24%, 25-26%, and 8-9% in the sediments treated with 500 mg/kg MW and 500 mg/kg TB, respectively. In addition, the 16S rRNA gene sequence results showed that these concentrations of materials changed the bacterial diversity. The abundance of Acidobacteria, Actinobacteria, Nitrospirae and Firmicutes were increased by some of the applied materials, which could promote plant growth, change Cd bioavailability and reduce Cd toxicity. These findings indicated that the applied environment functional materials could facilitate the phytoremediation of Cd contaminated environment by changing Cd fractions, sediments properties and bacterial community structure.


Asunto(s)
Biodegradación Ambiental , Cadmio/química , Microbiota , Contaminantes del Suelo/química , Bacterias , Disponibilidad Biológica , Cadmio/análisis , Carbón Orgánico , Hierro/química , Nanotubos de Carbono , ARN Ribosómico 16S , Suelo/química , Contaminantes del Suelo/análisis
9.
Crit Rev Biotechnol ; 38(3): 455-468, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28903604

RESUMEN

Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.


Asunto(s)
Biotecnología/métodos , Nanoestructuras/química , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Plantas/metabolismo , Contaminantes del Suelo/química
10.
Crit Rev Biotechnol ; 38(5): 671-689, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29082760

RESUMEN

Endocrine-disrupting compounds (EDCs) can interfere with endocrine systems and bio-accumulate through the food chain and even decrease biodiversity in contaminated areas. This review discusses a critical overview of recent research progress in the biotransformation of EDCs (including polychlorinated biphenyl and nonylphenol, and suspected EDCs such as heavy metals and sulfonamide antibiotics) by white rot fungi (WRF) based on techniques with an emphasis on summarizing and analyzing fungal molecular, metabolic and genetic mechanisms. Not only intracellular metabolism which seems to perform essential roles in the ability of WRF to transform EDCs, but also advanced applications are deeply discussed. This review mainly reveals the removal pathway of heavy metal and antibiotic pollutants because the single pollution almost did not exist in a real environment while the combined pollution has become more serious and close to people's life. The trends in WRF technology and its related advanced applications which use the combined technology, including biocatalysis of WRF and adsorption of nanomaterials, to degrade EDCs have also been introduced. Furthermore, challenges and future research needs EDCs biotransformation by WRF are also discussed. This research, referring to metabolic mechanisms and the combined technology of WRF with nanomaterials, undoubtedly contributes to the applications of biotechnology. This review will be of great benefit to an understanding of the trends in biotechnology for the removal of EDCs.


Asunto(s)
Biodegradación Ambiental , Disruptores Endocrinos , Nanoestructuras/química , Phanerochaete , Biotecnología , Biotransformación , Disruptores Endocrinos/química , Disruptores Endocrinos/aislamiento & purificación , Disruptores Endocrinos/metabolismo , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Metales Pesados/metabolismo , Phanerochaete/química , Phanerochaete/metabolismo , Phanerochaete/fisiología
11.
Ecotoxicol Environ Saf ; 153: 229-237, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29453100

RESUMEN

Lead (Pb) is a highly toxic environmental pollutant, and could result in toxic effects on living organisms. The effects of 0, 100, 200, 500, 1000 and 2000 mg/kg of nZVI on plant growth, Pb accumulation and antioxidative responses of Lolium perenne were investigated. Results showed that the total Pb contents in L. perenne with the treatment of low concentrations of nZVI (100, 200 and 500 mg/kg) were higher than those in the non-nZVI treatments, and the highest Pb accumulation capacity of 1175.40 µg per pot was observed in L. perenne with the treatment of 100 mg/kg nZVI. However, the total Pb contents in L. perenne decreased at high concentrations of nZVI (1000 and 2000 mg/kg). This might be resulted from the decrease of photosynthetic chlorophyll content and the aggravated oxidative stress induced by the high concentration of nZVI, which caused the decrease of plant biomass and metal accumulation capacity in plant. Moreover, the sequential extraction experiments results showed that the lowest acid soluble fraction of Pb in the sediments was found in the treatment with 100 mg/kg of nZVI, indicating that 100 mg/kg was the optimum concentration for nZVI to assist the phytoremediation of Pb-polluted sediment. To conclude, these findings provide a promising method to remediate Pb-polluted sediment by nZVI assisted phytoremediation.


Asunto(s)
Sedimentos Geológicos/química , Hierro/química , Plomo/análisis , Lolium/efectos de los fármacos , Nanoestructuras/química , Contaminantes del Suelo/análisis , Antioxidantes/análisis , Biodegradación Ambiental , Biomasa , Relación Dosis-Respuesta a Droga , Lolium/química , Lolium/enzimología , Suelo/química
12.
Planta ; 245(5): 863-873, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28204874

RESUMEN

MAIN CONCLUSION: This review provides new insight that calcium plays important roles in plant growth, heavy metal accumulation and translocation, photosynthesis, oxidative damage and signal transduction under cadmium stress. Increasing heavy metal pollution problems have raised word-wide concerns. Cadmium (Cd), being a highly toxic metal, poses potential risks both to ecosystems and human health. Compared with conventional technologies, phytoremediation, being cost-efficient, highly stable and environment-friendly, is believed to be a promising green technology for Cd decontamination. However, Cd can be easily taken up by plants and may cause severe phytotoxicity to plants, thus limiting the efficiency of phytoremediation. Various researches are being done to investigate the effects of exogenous substances on the mitigation of Cd toxicity to plants. Calcium (Ca) is an essential plant macronutrient that involved in various plant physiological processes, such as plant growth and development, cell division, cytoplasmic streaming, photosynthesis and intracellular signaling transduction. Due to the chemical similarity between Ca and Cd, Ca may mediate Cd-induced physiological or metabolic changes in plants. Recent studies have shown that Ca could be used as an exogenous substance to protect plants against Cd stress by the alleviation of growth inhibition, regulation of metal uptake and translocation, improvement of photosynthesis, mitigation of oxidative damages and the control of signal transduction in the plants. The effects of Ca on toxic concentrations of Cd in plants are reviewed. This review also provides new insight that plants with enhanced Ca level have improved resistance to Cd stress.


Asunto(s)
Cadmio/toxicidad , Calcio/farmacología , Plantas/efectos de los fármacos , Biodegradación Ambiental , Cadmio/metabolismo , Calcio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico/efectos de los fármacos
13.
Environ Sci Technol ; 51(19): 11308-11316, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28850225

RESUMEN

Nanoparticles can be absorbed by plants, but their impacts on phytoremediation are not yet well understood. This study was carried out to determine the impacts of starch stabilized nanoscale zerovalent iron (S-nZVI) on the cadmium (Cd) accumulation and the oxidative stress in Boehmeria nivea (L.) Gaudich (ramie). Plants were cultivated in Cd-contaminated sediments amended with S-nZVI at 100, 500, and 1000 mg/kg, respectively. Results showed that S-nZVI promoted Cd accumulation in ramie seedlings. The subcellular distribution result showed that Cd content in cell wall of plants reduced, and its concentration in cell organelle and soluble fractions increased at S-nZVI treatments, indicating the promotion of Cd entering plant cells by S-nZVI. In addition, the 100 mg/kg S-nZVI alleviated the oxidative damage to ramie under Cd-stress, while 500 and 1000 mg/kg S-nZVI inhibited plant growth and aggravated the oxidative damage to plants. These findings demonstrate that nanoparticles at low concentration can improve the efficiency of phytoremediation. This study herein develops a promising novel technique by the combined use of nanotechnology and phytoremediation in the remediation of heavy metal contaminated sites.


Asunto(s)
Biodegradación Ambiental , Boehmeria , Cadmio , Hierro , Estrés Oxidativo
14.
Biochim Biophys Acta ; 1848(1 Pt B): 299-306, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24794573

RESUMEN

FXYD2 is a membrane protein responsible for regulating the function of the Na,K-ATPase in mammalian kidney epithelial cells. Here we report the structure of FXYD2b, one of two splice variants of the protein, determined by NMR spectroscopy in detergent micelles. Solid-state NMR characterization of the protein embedded in phospholipid bilayers indicates that several arginine side chains may be involved in hydrogen bond interactions with the phospholipid polar head groups. The structure and the NMR data suggest that FXYD2b could regulate the Na,K-ATPase by modulating the effective membrane surface electrostatics near the ion binding sites of the pump.


Asunto(s)
Arginina/química , ATPasa Intercambiadora de Sodio-Potasio/química , Secuencia de Aminoácidos , Humanos , Espectroscopía de Resonancia Magnética , Micelas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Electricidad Estática
15.
Talanta ; 276: 126231, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788376

RESUMEN

Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.


Asunto(s)
Escherichia coli , Matriz Extracelular de Sustancias Poliméricas , Simulación del Acoplamiento Molecular , Tetraciclina , Tetraciclina/química , Tetraciclina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Sitios de Unión , Espectroscopía Infrarroja por Transformada de Fourier
16.
BMC Med Genomics ; 17(1): 191, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026312

RESUMEN

OBJECTIVE: The objective of this study was to investigate the therapeutic efficacy of thalidomide across various genotype presentations of ß-thalassemia so as to facilitate the early screening of thalidomide-sensitive thalassemia cases and to understand the impact of iron overload on thalidomide. METHODS: From our initial sample of 52 patients, we observed 48 patients with ß-thalassemia for two years after administration of thalidomide. This cohort included 34 patients with transfusion-dependent thalassemia (TDT) and 14 patients with non-transfusion-dependent thalassemia (NTDT). We recorded the values of hemoglobin (Hb), fetal hemoglobin (HbF), and serum ferritin (SF) in the baseline period and at 1, 3, 6, 12, 18, and 24 months after enrollment, as well as the pre- and post-treatment blood transfusion volume in all 48 cases. According to the increase in Hb levels from baseline during the 6-month observation period, the response to thalidomide was divided into four levels: main response (MaR), minor response (MiR), slow response (SLR), and no response (NR). A decrease in serum ferritin levels compared to baseline was considered alleviation of iron overload. We calculated the overall response rate (ORR) as follows: ORR = MaR + MiR + SLR/number of observed cases. RESULTS: The ORR was 91.7% (44/48 cases), and 72.9% showed MaR (35/48 cases). Among the 34 patients with TDT, 21 patients (61.8%) were free of blood transfusion, and the remaining 13 patients still required blood transfusion, but their total blood transfusion volume reduced by 31.3% when compared to the baseline. We found a total of 33 cases with 10 combinations of advantageous genes, which included 5 cases with ßCD41-42/ßCD17 and 6 cases with ßCD41-42/ß-28. Based on the treatment outcomes among the 48 cases in the observation group, there were 33 cases in the MaR group and 15 cases in the SLR/NR group. There was a difference in HbF between the two groups at baseline (P = 0.041). There were significant differences between the two groups in Hb and HbF at the time points of 6 and 12 months, respectively (P < 0.001). Compared to the baseline measurement, there was a significant decrease in the level of SF at months 12 and 24 (P < 0.001). CONCLUSION: In this study, we identified 10 ß-thalassemia gene combinations that were sensitive to thalidomide. These gene combinations can be used for initial screening and to predict the therapeutic effect of thalidomide in clinical practice. We examined the therapeutic response to thalidomide and found that the administration of thalidomide in combination with standardized iron removal was more beneficial in reducing iron overload.


Asunto(s)
Genotipo , Talidomida , Talasemia beta , Humanos , Talidomida/uso terapéutico , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/sangre , Femenino , Masculino , Adulto , Resultado del Tratamiento , Adolescente , Niño , Ferritinas/sangre , Adulto Joven , Transfusión Sanguínea , Preescolar , Hemoglobina Fetal/genética , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/genética
17.
Zhongguo Zhong Yao Za Zhi ; 38(13): 2197-201, 2013 Jul.
Artículo en Zh | MEDLINE | ID: mdl-24079253

RESUMEN

OBJECTIVE: To study the preventive effect of Ganlong capsule on chronic alcoholic hepatic injury in rats and its mechanism. METHOD: The rat chronic hepatic injury model was induced by intragastrically administered with gradient alcohol, once a day for 12 weeks. Efforts were made to detect the content of ALT, AST, TG, CHO, TNF-alpha in rat serum and GSH, SOD, MDA, ADH, Alb in hepatic tissues were detected, conduct a hepatic pathological examination, and pathological injury grading for livers. RESULT: Ganlong capsule could reduce the content of ALT, AST, TG in blood serum, MDA in hepatic tissues (P < 0.05), and enhance the activities of antioxidants such as SOD and GSH in hepatic tissues (P < 0.05). According to the liver histopathological observation, most structures of hepatic lobules in the model group were destroyed, with disordered liver cell cords, diffuse fat empty bubbles of different sizes in cytoplasm, focal necrosis and infiltration of inflammatory cells. All of treatment groups showed alleviation in rat liver injury to varying degrees. CONCLUSION: Ganlong capsule has a significant preventive effect to chronic alcoholic hepatic injury in rats.


Asunto(s)
Hepatopatías Alcohólicas/prevención & control , Animales , Cápsulas , Enfermedad Crónica , Femenino , Glutatión/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Medicina Tradicional China , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/sangre
18.
Artículo en Inglés | MEDLINE | ID: mdl-37889823

RESUMEN

With the advent of the data era, most power secondary side equipment tends to be digitized. The power system needs more accurate numerical results to further improve its operating efficiency. Therefore, it is important to study the electromagnetic interferences of very fast transient overvoltage (VFTO) generated by gas-insulated switchgear (GIS). To protect the secondary side cable from interferences, the secondary side cable is wrapped with an outer shield and the shield is grounded. When the interference of VFTO comes, it will couple the interference current and interference voltage on the shield of the cable. By grounding, the interference is greatly discharged. However, due to the grounding resistance, there will be a potential difference between the grounding points at the two ends of the shield of the cable. This causes a corresponding interference current to flow through the shield, which will affect the transmission of signals inside the cable. In the actual substation, the resistivity of the soil, the ambient temperature and humidity of the area, and so on will have impacts on the grounding resistance. In addition, the irregularity of the cable arrangement and the time of the use of the cable will have impacts on the signal transmission of the cable. Based on the abovementioned issues, this article proposed a comprehensive assessment method based on the combination of the cloud model and measurement of alternatives and ranking according to compromise solution (MARCOS). The method brings the cloud model into MARCOS by the algorithm of the contribution of the cloud droplets. It overcomes the difficulty of cloud model quantification. By comparing the results of the proposed method with the actual conditions at the substation and the results of the common MARCOS assessment method, the validity of the method is verified, and a reference scheme is provided for substation optimization.

19.
Environ Sci Pollut Res Int ; 30(2): 2355-2373, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399293

RESUMEN

Waste mushroom substrate (WMS) generated in large quantities from mushroom production process has caused severe environmental pollution. As a sustainable resource, the valorization of WMS in the agricultural field has attracted attention due to the abundant active components. A comprehensive review of valorization of WMS in agricultural production is meaningful to promote the further utilization of this resource. This paper provided an overview of the valorization in sustainable agricultural production using WMS, including animal and crop farming improvement, and agricultural environmental restoration. Moreover, the limitations and the possible development directions of WMS in agricultural production were discussed. Different sustainable cycle models for WMS in agricultural production were proposed. The aim of this review is to provide a feasible solution for the favorable treatment of WMS and improvement of agricultural production quality.


Asunto(s)
Agaricales , Restauración y Remediación Ambiental , Animales , Agricultura , Contaminación Ambiental , Granjas
20.
Food Chem ; 398: 133872, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964566

RESUMEN

The expansion of the edible fungi industry has resulted in the production of large amounts of edible fungus residues, causing great pressure on environmental protection.Therefore, research on edible fungus residue utilization has become a controversial issue. Thus far, numerous efforts have been devoted to separate active substances from edible fungus substrates and residues for high application value utilization. Building upon this, the main methods for extracting active substances from edible mushroom residues are reviewed, and the mechanisms, influencing factors, and trade-offs of the various methods are analysed. Furthermore, the existing and possible directions of utilization of the extracted active substances are reviewed and discussed. Finally, challenges and prospects for the extraction and utilization of different substances in edible fungus residues are proposed. This review provides an effective strategy for protecting the ecological environment and promoting the sustainable development of human society.


Asunto(s)
Agaricales , Hongos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA