Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 57(15): 2117-2129, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38995323

RESUMEN

ConspectusDNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission.In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs.This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.


Asunto(s)
ADN , Nanopartículas del Metal , Plata , Plata/química , ADN/química , Nanopartículas del Metal/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
2.
J Am Chem Soc ; 145(19): 10721-10729, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37155337

RESUMEN

DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.


Asunto(s)
Cloruros , Plata , Cloruros/química , Plata/química , Ligandos , Cristalografía por Rayos X , ADN/química
3.
ACS Nano ; 18(39): 26997-27008, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39288200

RESUMEN

DNA-stabilized silver nanoclusters (AgN-DNAs) have sequence-tuned compositions and fluorescence colors. High-throughput experiments together with supervised machine learning models have recently enabled design of DNA templates that select for AgN-DNA properties, including near-infrared (NIR) emission that holds promise for deep tissue bioimaging. However, these existing models do not enable simultaneous selection of multiple AgN-DNA properties, and require significant expert input for feature engineering and class definitions. This work presents a model for multiobjective, continuous-property design of AgN-DNAs with automatic feature extraction, based on variational autoencoders (VAEs). This model is generative, i.e., it learns both the forward mapping from DNA sequence to AgN-DNA properties and the inverse mapping from properties to sequence, and is trained on an experimental data set of DNA sequences paired with AgN-DNA fluorescence properties. Experimental testing shows that the model enables effective design of AgN-DNA emission, including bright NIR AgN-DNAs with 4-fold greater abundance compared to training data. In addition, Shapley analysis is employed to discern learned nucleobase patterns that correspond to fluorescence color and brightness. This generative model can be adapted for a range of biomolecular systems with sequence-dependent properties, enabling precise design of emerging biomolecular nanomaterials.


Asunto(s)
ADN , Nanopartículas del Metal , Plata , ADN/química , Plata/química , Nanopartículas del Metal/química , Nanoestructuras/química
4.
Chem Commun (Camb) ; 59(70): 10488-10491, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37551832

RESUMEN

We present chemical synthesis strategies for DNA-stabilized silver nanoclusters (AgN-DNAs) with near-infrared (NIR) emission in the biological tissue transparency windows. Elevated temperatures can significantly increase chemical yield of near-infrared nanoclusters. In most cases, basic pH favors near-infrared nanoclusters while micromolar amounts of NaCl inhibit their formation.


Asunto(s)
Nanopartículas del Metal , Plata , Cloruro de Sodio , Calor , ADN , Concentración de Iones de Hidrógeno
5.
Chem Sci ; 14(41): 11340-11350, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886084

RESUMEN

Near-infrared (NIR) emissive DNA-stabilized silver nanoclusters (AgN-DNAs) are promising fluorophores in the biological tissue transparency windows. Hundreds of NIR-emissive AgN-DNAs have recently been discovered, but their structure-property relationships remain poorly understood. Here, we investigate 19 different far-red and NIR emissive AgN-DNA species stabilized by 10-base DNA templates, including well-studied emitters whose compositions and chiroptical properties have never been reported before. The molecular formula of each purified species is determined by high-resolution mass spectrometry and correlated to its optical absorbance, emission, and circular dichroism (CD) spectra. We find that there are four distinct compositions for AgN-DNAs emissive at the far red/NIR spectral border. These emitters are either 8-electron clusters stabilized by two DNA oligomer copies or 6-electron clusters with one of three different ligand compositions: two oligomer copies, three oligomer copies, or two oligomer copies with additional chlorido ligands. Distinct optical and chiroptical signatures of 6-electron AgN-DNAs correlate with each ligand composition. AgN-DNAs with three oligomer ligands exhibit shorter Stokes shifts than AgN-DNAs with two oligomers, and AgN-DNAs with chlorido ligands have increased Stokes shifts and significantly suppressed visible CD transitions. Nanocluster electron count also significantly influences electronic structure and optical properties, with 6-electron and 8-electron AgN-DNAs exhibiting distinct absorbance and CD spectral features. This study shows that the optical and chiroptical properties of NIR-emissive AgN-DNAs are highly sensitive to nanocluster composition and illustrates the diversity of structure-property relationships for NIR-emissive AgN-DNAs, which could be harnessed to precisely tune these emitters for bioimaging applications.

6.
ACS Nano ; 16(10): 16322-16331, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36124941

RESUMEN

DNA can stabilize silver nanoclusters (AgN-DNAs) whose atomic sizes and diverse fluorescence colors are selected by nucleobase sequence. These programmable nanoclusters hold promise for sensing, bioimaging, and nanophononics. However, DNA's vast sequence space challenges the design and discovery of AgN-DNAs with tailored properties. In particular, AgN-DNAs with bright near-infrared luminescence above 800 nm remain rare, placing limits on their applications for bioimaging in the tissue transparency windows. Here, we present a design method for near-infrared emissive AgN-DNAs. By combining high-throughput experimentation and machine learning with fundamental information from AgN-DNA crystal structures, we distill the salient DNA sequence features that determine AgN-DNA color, for the entire known spectral range of these nanoclusters. A succinct set of nucleobase staple features are predictive of AgN-DNA color. By representing DNA sequences in terms of these motifs, our machine learning models increase the design success for near-infrared emissive AgN-DNAs by 12.3 times as compared to training data, nearly doubling the number of known AgN-DNAs with bright near-infrared luminescence above 800 nm. These results demonstrate how incorporating known structure-property relationships into machine learning models can enhance materials study and design, even for sparse and imbalanced training data.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/química , Fluorescencia , ADN/química , Aprendizaje Automático , Nanopartículas del Metal/química
7.
J Phys Chem Lett ; 13(35): 8305-8311, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36037464

RESUMEN

DNA oligomers are known to serve as stabilizing ligands for silver nanoclusters (AgN-DNAs) with rod-like nanocluster geometries and nanosecond-lived fluorescence. Here, we report two AgN-DNAs that possess distinctly different structural properties and are the first to exhibit only microsecond-lived luminescence. These emitters are characterized by significant broadband downconversion from the ultraviolet/visible to the near-infrared region. Circular dichroism spectroscopy shows that the structures of these two AgN-DNAs differ significantly from previously reported AgN-DNAs. We find that these nanoclusters contain eight valence electrons, making them the first reported DNA-stabilized luminescent quasi-spherical superatoms. This work demonstrates the important role that nanocluster composition and geometry play in dictating luminescence properties of AgN-DNAs and significantly expands the space of structure-property relations that can be achieved for AgN-DNAs.


Asunto(s)
Luminiscencia , Plata , ADN/química , Electrones , Fluorescencia , Plata/química
8.
Nanoscale ; 13(8): 4602-4613, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605954

RESUMEN

DNA-stabilized silver clusters (AgN-DNAs) exhibit diverse sequence-programmed fluorescence, making these tunable nanoclusters promising sensors and bioimaging probes. Recent advances in the understanding of AgN-DNA structures and optical properties have largely relied on detailed characterization of single species isolated by chromatography. Because most AgN-DNAs are unstable under chromatography, such studies do not fully capture the diversity of these clusters. As an alternative method, we use high-throughput synthesis and spectroscopy to measure steady state Stokes shifts of hundreds of AgN-DNAs. Steady state Stokes shift is of interest because its magnitude is determined by energy relaxation processes which may be sensitive to specific cluster geometry, attachment to the DNA template, and structural engagement of solvent molecules. We identify 305 AgN-DNA samples with single-peaked emission and excitation spectra, a characteristic of pure solutions and single emitters, which thus likely contain a dominant emissive AgN-DNA species. Steady state Stokes shifts of these samples vary widely, are in agreement with values reported for purified clusters, and are several times larger than for typical organic dyes. We then examine how DNA sequence selects AgN-DNA excitation energies and Stokes shifts, comment on possible mechanisms for energy relaxation processes in AgN-DNAs, and discuss how differences in AgN-DNA structure and DNA conformation may result in the wide distribution of optical properties observed here. These results may aid computational studies seeking to understand the fluorescence process in AgN-DNAs and the relations of this process to AgN-DNA structure.


Asunto(s)
ADN , Plata , Fluorescencia , Conformación de Ácido Nucleico , Solventes
9.
Nanoscale Adv ; 3(5): 1230-1260, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132866

RESUMEN

DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA