Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202408725, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864359

RESUMEN

The strasseriolide macrolides show promising in vitro and in vivo activities against P. falciparum and T. cruzi, the parasites causing malaria and Chagas disease, respectively. However, the as yet poor understanding of structure/activity relationships and the fact that one family member proved systemically toxic for unknown reasons render a more detailed assessment of these potential lead compounds difficult. To help overcome these issues, a collective total synthesis was devised. The key steps consisted of a ring closing alkyne metathesis (RCAM) reaction to forge a common macrocyclic intermediate followed by a hydroxy-directed ruthenium catalyzed trans-hydrostannation of the propargyl alcohol site thus formed. The resulting alkenyltin derivative served as the central node of the synthesis blueprint, which could be elaborated into the natural products themselves as well as into a set of non-natural analogues according to the concept of diverted total synthesis. The recorded biological data confirmed the potency of the compounds and showed the lack of noticeable cytotoxicity. The "northern" allylic alcohol subunit was recognized as an integral part of the pharmacophore, yet it provides opportunities for chemical modification.

2.
Malar J ; 20(1): 457, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865639

RESUMEN

BACKGROUND: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. METHODS: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. RESULTS: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. CONCLUSIONS: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


Asunto(s)
Antimaláricos , Ascomicetos/química , Macrólidos , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/toxicidad , Evaluación Preclínica de Medicamentos , Femenino , Macrólidos/química , Macrólidos/farmacología , Macrólidos/toxicidad , Ratones
3.
Cell Mol Life Sci ; 77(8): 1645-1660, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31377845

RESUMEN

To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.


Asunto(s)
Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos de Timina/metabolismo , Línea Celular , Proliferación Celular , Daño del ADN , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxiuracil/genética , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Humanos , Células MCF-7 , Mutación , Pirofosfatasas/genética , Nucleótidos de Timina/genética
4.
Malar J ; 18(1): 392, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796083

RESUMEN

BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS: Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages.


Asunto(s)
Antimaláricos/farmacología , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Plasmodium falciparum/efectos de los fármacos , Pirofosfatasas/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirofosfatasas/metabolismo
5.
Parasitology ; 146(14): 1743-1754, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603063

RESUMEN

Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.


Asunto(s)
Antiparasitarios/farmacología , Carbohidratos/inmunología , Interacciones Huésped-Parásitos/efectos de los fármacos , Ganado/parasitología , Polisacáridos/inmunología , Animales , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Humanos , Leishmania/efectos de los fármacos , Leishmania/patogenicidad , Ratones , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad , Tripanosomiasis Africana/tratamiento farmacológico
6.
PLoS Pathog ; 12(9): e1005851, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27662652

RESUMEN

Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.

7.
Bioorg Med Chem Lett ; 28(14): 2485-2489, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29880399

RESUMEN

In this article we present a series of non-cytotoxic potent human choline kinase (CK) inhibitors that exhibit nanomolar antiplasmodial activity in vitro. The most active antiplasmodial compounds, 10a-b, bearing a pyridinium cationic head were inactive against CK, while compounds 10g and 10j with a quinolinium moiety exhibit moderate inhibition of both the parasite and the enzyme. The results point towards an additional mechanism of action unrelated to CK inhibition that remains to be established.


Asunto(s)
Antimaláricos/farmacología , Compuestos de Bifenilo/farmacología , Colina Quinasa/antagonistas & inhibidores , Etano/análogos & derivados , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Colina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Etano/síntesis química , Etano/química , Etano/farmacología , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Sales (Química)/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad
8.
J Nat Prod ; 81(7): 1687-1691, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29924612

RESUMEN

A potent antiplasmodial polycyclic xanthone, MDN-0185 (1), was isolated from an unidentified species of the genus Micromonospora. The planar structure of 1 was established as a seven-ring polycyclic xanthone with partial structures very similar to two known natural products, namely, xantholipin and Sch 54445. Using ROESY correlations, the relative stereochemistry of the two independent stereoclusters of compound 1 could be determined. Mosher analysis and comparison of the specific rotation of compound 1 with that of xantholipin allowed the determination of its absolute configuration. Compound 1 exhibited an IC50 of 9 nM against Plasmodium falciparum 3D7 parasites.


Asunto(s)
Antimaláricos/aislamiento & purificación , Micromonospora/química , Plasmodium falciparum/efectos de los fármacos , Compuestos Policíclicos/aislamiento & purificación , Xantonas/aislamiento & purificación , Antimaláricos/química , Antimaláricos/farmacología , Estructura Molecular , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Xantonas/química , Xantonas/farmacología
9.
Mol Microbiol ; 102(3): 365-385, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27426054

RESUMEN

Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.


Asunto(s)
Timidina Quinasa/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología , Puntos de Control del Ciclo Celular/fisiología , Nucleósido-Fosfato Quinasa/metabolismo , Relación Estructura-Actividad , Timidina/metabolismo , Timidina Quinasa/química , Timidina Monofosfato/metabolismo , Nucleótidos de Timina/metabolismo , Trypanosoma brucei brucei/metabolismo
10.
Bioorg Med Chem Lett ; 27(16): 3629-3635, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28729055

RESUMEN

In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery.


Asunto(s)
Diseño de Fármacos , Pirazoles/síntesis química , Quinazolinonas/química , Tripanocidas/síntesis química , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Quinazolinonas/síntesis química , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/tratamiento farmacológico
11.
Biochem J ; 473(17): 2635-43, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27325794

RESUMEN

Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Azacitidina/análogos & derivados , Pirofosfatasas/metabolismo , Azacitidina/farmacología , Línea Celular , Cromatografía Liquida , Decitabina , Células HeLa , Humanos , Espectrometría de Masas en Tándem
12.
PLoS Pathog ; 10(5): e1004114, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24789335

RESUMEN

Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Tripanocidas/uso terapéutico , Animales , Chlorocebus aethiops , Cristalografía por Rayos X , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/metabolismo , Humanos , Modelos Moleculares , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Unión Proteica , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacología , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/enzimología , Células Vero
13.
Antimicrob Agents Chemother ; 59(4): 1950-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25583723

RESUMEN

We tested the antituberculosis drug SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, for its in vitro activity against the trypanosomatid parasite Trypanosoma cruzi, the causative agent of Chagas disease. SQ109 was found to be a potent inhibitor of the trypomastigote form of the parasite, with a 50% inhibitory concentration (IC50) for cell killing of 50 ± 8 nM, but it had little effect (50% effective concentration [EC50], ∼80 µM) in a red blood cell hemolysis assay. It also inhibited extracellular epimastigotes (IC50, 4.6 ± 1 µM) and the clinically relevant intracellular amastigotes (IC50, ∼0.5 to 1 µM), with a selectivity index of ∼10 to 20. SQ109 caused major ultrastructural changes in all three life cycle forms, as observed by light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It rapidly collapsed the inner mitochondrial membrane potential (Δψm) in succinate-energized mitochondria, acting in the same manner as the uncoupler FCCP [carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone], and it caused the alkalinization of internal acidic compartments, effects that are likely to make major contributions to its mechanism of action. The compound also had activity against squalene synthase, binding to its active site; it inhibited sterol side-chain reduction and, in the amastigote assay, acted synergistically with the antifungal drug posaconazole, with a fractional inhibitory concentration index (FICI) of 0.48, but these effects are unlikely to account for the rapid effects seen on cell morphology and cell killing. SQ109 thus most likely acts, at least in part, by collapsing Δψ/ΔpH, one of the major mechanisms demonstrated previously for its action against Mycobacterium tuberculosis. Overall, the results suggest that SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, may also have potential as a drug lead against Chagas disease.


Asunto(s)
Adamantano/análogos & derivados , Enfermedad de Chagas/tratamiento farmacológico , Etilenodiaminas/uso terapéutico , Tripanocidas/uso terapéutico , Adamantano/uso terapéutico , Animales , Hemólisis/efectos de los fármacos , Humanos , Técnicas In Vitro , Células LLC-PK1 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Escualeno/antagonistas & inhibidores , Esteroles/biosíntesis , Porcinos , Triazoles/farmacología , Trypanosoma cruzi/efectos de los fármacos
14.
Biochem J ; 459(1): 171-80, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24467396

RESUMEN

The size and composition of dNTP (deoxyribonucleoside triphosphate) pools influence the accuracy of DNA synthesis and consequently the genetic stability of nuclear and mitochondrial genomes. In order to keep the dNTP pool in balance, the synthesis and degradation of DNA precursors must be precisely regulated. One such mechanism involves catabolic activities that convert deoxynucleoside triphosphates into their monophosphate form. Human cells possess an all-α NTP (nucleoside triphosphate) pyrophosphatase named DCTPP1 [dCTP pyrophosphatase 1; also known as XTP3-TPA (XTP3-transactivated protein A)]. In the present study, we provide an extensive characterization of this enzyme which is ubiquitously distributed in the nucleus, cytosol and mitochondria. Interestingly, we found that in addition to dCTP, methyl-dCTP and 5-halogenated nucleotides, DCTPP1 hydrolyses 5-formyl-dCTP very efficiently and with the lowest Km value described so far. Because the biological function of mammalian all-α NTP pyrophosphatases remains uncertain, we examined the role of DCTPP1 in the maintenance of pyrimidine nucleotide pools and cellular sensitivity to pyrimidine analogues. DCTPP1-deficient cells accumulate high levels of dCTP and are hypersensitive to exposure to the nucleoside analogues 5-iodo-2'-deoxycytidine and 5-methyl-2'-deoxycytidine. The results of the present study indicate that DCTPP1 has a central role in the balance of dCTP and the metabolism of deoxycytidine analogues, thus contributing to the preservation of genome integrity.


Asunto(s)
Homeostasis/fisiología , Pirofosfatasas/fisiología , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Fibroblastos/enzimología , Células HeLa , Humanos
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 802-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598749

RESUMEN

Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Šare reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca(2+) ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg(2+) ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS-46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.


Asunto(s)
Difosfonatos/metabolismo , Difosfonatos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Geraniltranstransferasa/metabolismo , Leishmania major/enzimología , Nitrógeno , Termodinámica , Animales , Cristalización , Cristalografía por Rayos X , Difosfonatos/uso terapéutico , Geraniltranstransferasa/química , Humanos , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/prevención & control , Unión Proteica/efectos de los fármacos , Conformación Proteica
16.
Mol Microbiol ; 90(4): 665-79, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23926900

RESUMEN

The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.


Asunto(s)
Lectinas de Unión a Manosa/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Endocitosis/efectos de los fármacos , Glicosilación , Humanos , Liliaceae , Lectinas de Unión a Manosa/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Tripanocidas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Virulencia/efectos de los fármacos
17.
J Nat Prod ; 77(9): 2118-23, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25215605

RESUMEN

Bioassay-guided fractionation of the crude fermentation extract of Heterospora chenopodii led to the isolation of a novel monoacylglyceryltrimethylhomoserine (1). The structure of this new betaine lipid was elucidated by detailed spectroscopic analysis using one- and two-dimensional NMR experiments and high-resolution mass spectrometry. Compound 1 displayed moderate in vitro antimalarial activity against Plasmodium falciparum, with an IC50 value of 7 µM. This betaine lipid is the first monoacylglyceryltrimethylhomoserine ever reported in the Fungi, and its acyl moiety also represents a novel natural 3-keto fatty acid. The new compound was isolated during a drug discovery program aimed at the identification of new antimalarial leads from a natural product library of microbial extracts. Interestingly, the related fungus Heterospora dimorphospora was also found to produce compound 1, suggesting that species of this genus may be a promising source of monoacylglyceryltrimethylhomoserines.


Asunto(s)
Antimaláricos , Betaína , Plasmodium falciparum/efectos de los fármacos , Triglicéridos , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Betaína/análogos & derivados , Betaína/química , Betaína/aislamiento & purificación , Betaína/farmacología , Humanos , Malaria/tratamiento farmacológico , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/química , Triglicéridos/química , Triglicéridos/aislamiento & purificación , Triglicéridos/farmacología
18.
Biochem J ; 456(1): 81-8, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24001052

RESUMEN

The Tritryps Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani are responsible for great morbidity and mortality in developing countries. Their dimeric dUTPases are members of the all-α NTP pyrophosphohydrolase family and represent promising drug targets due to their essential nature and markedly different structural and biochemical properties compared with the trimeric human enzyme. In the present paper we describe the structure of the T. brucei enzyme in open and closed conformations. Furthermore, we probe the reaction mechanism through the binding of transition state mimics both in solution and in the crystal. 31P-NMR and tryptophan fluorescence quenching in the presence of AlF3 and MgF3- identified which phosphate is subject to nucleophilic attack by a water molecule. The structures in complex with two transition state analogues confirm that the nucleophilic attack occurs on the ß-phosphate in contrast with the α-phosphate in the trimeric enzymes. These results establish the structural basis of catalysis of these important housekeeping enzymes and has ramifications for the wider all-α NTP pyrophosphohydrolase family.


Asunto(s)
Pirofosfatasas/química , Trypanosoma brucei brucei/enzimología , Catálisis , Cristalografía por Rayos X , Humanos , Conformación Proteica , Multimerización de Proteína , Pirofosfatasas/antagonistas & inhibidores , Soluciones , Especificidad por Sustrato
19.
Microbiol Spectr ; 12(1): e0167923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009959

RESUMEN

IMPORTANCE: The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.


Asunto(s)
Productos Biológicos , Coronavirus Humano OC43 , Humanos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Pandemias , Línea Celular , Antivirales/farmacología
20.
Bioorg Med Chem ; 21(18): 5876-85, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23916149

RESUMEN

Previously we have shown that trityl and diphenyl deoxyuridine derivatives and their acyclic analogues can inhibit Plasmodium falciparum dUTPase (PfdUTPase). We report the synthesis of conformationally restrained amide derivatives as inhibitors PfdUTPase, including both acyclic and cyclic examples. Activity was dependent on the orientation and location of the amide constraining group. In the case of the acyclic series, we were able to obtain amide-constrained analogues which showed similar or greater potency than the unconstrained analogues. Unfortunately these compounds showed lower selectivity in cellular assays.


Asunto(s)
Antimaláricos/química , Inhibidores Enzimáticos/química , Nucleósidos/química , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Pirofosfatasas/antagonistas & inhibidores , Amidas/química , Antimaláricos/síntesis química , Antimaláricos/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Cinética , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Pirofosfatasas/metabolismo , Uridina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA