Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glia ; 70(3): 522-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34787332

RESUMEN

Recently, oligodendrocytes (Ol) have been attributed potential immunomodulatory effects. Yet, the exact mode of interaction with pathogenic CNS infiltrating lymphocytes remains unclear. Here, we attempt to dissect mechanisms of Ol modulation during neuroinflammation and characterize the interaction of Ol with pathogenic T cells. RNA expression analysis revealed an upregulation of immune-modulatory genes and adhesion molecules (AMs), ICAM-1 and VCAM-1, in Ol when isolated from mice undergoing experimental autoimmune encephalomyelitis (EAE). To explore whether AMs are involved in the interaction of Ol with infiltrating T cells, we performed co-culture studies on mature Ol and Th1 cells. Live cell imaging analysis showed direct interaction between both cell types. Eighty percentage of Th1 cells created contacts with Ol that lasted longer than 15 min, which may be regarded as physiologically relevant. Exposure of Ol to Th1 cells or their supernatant resulted in a significant extension of Ol processes, and upregulation of AMs as well as other immunomodulatory genes. Our observations indicate that blocking of oligodendroglial ICAM-1 can reduce the number of Th1 cells initially contacting the Ol. These results suggest that AMs may play a role in the interaction between Ol and Th1 cells. We identified Ol interacting with CD4+ cells in vivo in spinal cord tissue of EAE diseased mice indicating that our in vitro findings are of interest to further scientific research in this field. Further characterization and understanding of Ol interaction with infiltrating cells may lead to new therapeutic strategies enhancing Ol protection and remyelination potential. Oligodendrocytes regulate immune modulatory genes and adhesion molecules during autoimmune neuroinflammation Oligodendrocytes interact with Th1 cells in vitro in a physiologically relevant manner Adhesion molecules may be involved in Ol-Th1 cell interaction.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Molécula 1 de Adhesión Intercelular/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/patología , Molécula 1 de Adhesión Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Oligodendroglía/metabolismo
2.
Sci Rep ; 13(1): 22272, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097655

RESUMEN

Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Remielinización , Ratones , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Diferenciación Celular , Estudio de Asociación del Genoma Completo , Oligodendroglía , Vaina de Mielina/patología , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores de Transcripción SOXE/genética
3.
Mol Neurobiol ; 58(4): 1465-1481, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33200398

RESUMEN

Physical exercise can improve age-dependent decline in cognition, which in rodent is partly mediated by restoration of an age-dependent decline in neurogenesis. Exercise-inducible myokines in the circulation present a link in muscle-brain crosstalk. The transcription factor PGC-1α regulates the release of such myokines with neurotrophic properties into the circulation. We study how chronic muscular overexpression of PGC-1α could contribute to exercise-induced effects on hippocampal neurogenesis and if this effect could be enhanced in a running wheel paradigm. We used 3- and 11-month-old transgenic mice with overexpression of PGC-1α under the control of muscle creatinine kinase promoter (MCK-PGC-1α), which have a constitutively developed endurance muscle phenotype. Wild-type and MCK-PGC-1α mice were single housed with free access to running wheels. Four weeks of running in female animals increased the levels of newborn cells, immature neurons, and, for young animals, new mature neurons, compared to sedentary controls. However, no difference in these parameters was observed between wild-type and transgenic mice under sedentary or running conditions. Multiplex analysis of serum cytokines, chemokines, and myokines suggested several differences in serum protein concentrations between genotypes with musclin found to be significantly upregulated 4-fold in male MCK-PGC-1α animals. We conclude that constitutive muscular overexpression of PGC-1α, despite systemic changes and difference in serum composition, does not translate into exercise-induced effects on hippocampal neurogenesis, independent of the age of the animal. This suggests that chronic activation of PGC-1α in skeletal muscle is by itself not sufficient to mimic exercise-induced effects or to prevent decline of neurogenesis in aging.


Asunto(s)
Músculo Esquelético/metabolismo , Neurogénesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Envejecimiento , Análisis de Varianza , Animales , Citocinas/sangre , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
J Neuroimmunol ; 343: 577227, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247877

RESUMEN

During neuroinflammation, the shaker type potassium channel Kv1.4 is re-expressed in oligodendrocytes (Ol), but not immune cells. Here, we analyze the role of endogenous Kv1.4 in two demyelinating animal models of multiple sclerosis. While Kv1.4 deficiency in primary murine Ol led to a decreased proliferation rate in vitro, it did not exert an effect on Ol proliferation or on the extent of de- or remyelination in the cuprizone model in vivo. However, in experimental autoimmune encephalomyelitis, Kv1.4-/- mice exhibited a milder disease course and reduced Th1 responses. These data argue for an indirect effect of Kv1.4 on immune cells, possibly via glial cells.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Canal de Potasio Kv1.4/metabolismo , Remielinización/fisiología , Animales , Proliferación Celular/fisiología , Quelantes/toxicidad , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligodendroglía/metabolismo , Células TH1/inmunología
5.
J Mol Neurosci ; 70(7): 1038-1049, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32207050

RESUMEN

Neuroinflammation and demyelination are hallmarks of several neurological disorders such as multiple sclerosis and multiple system atrophy. To better understand the underlying mechanisms of de- and regeneration in respective diseases, it is critical to identify factors modulating these processes. One candidate factor is alpha-Synuclein (aSyn), which is known to be involved in the pathology of various neurodegenerative diseases. Recently, we have shown that aSyn is involved in the modulation of peripheral immune responses during acute neuroinflammatory processes. In the present study, the effect of aSyn deficiency on de- and regenerative events in the CNS was analyzed by using two different demyelinating animal models: chronic MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) and the cuprizone model. Histopathological analysis of spinal cord cross sections 8 weeks after EAE induction revealed a significant reduction of CNS inflammation accompanied by decreased myelin loss during late-stage inflammatory demyelination in aSyn-deficient mice. In contrast, after cuprizone-induced demyelination or remyelination following withdrawal of cuprizone, myelination and neuroinflammatory patterns were not affected by aSyn deficiency. These data provide further evidence for aSyn as regulator of peripheral immune responses under neuroinflammatory conditions, thereby also modulating degenerative events in late-stage demyelinating disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cuprizona/toxicidad , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , alfa-Sinucleína/genética
6.
Sci Rep ; 9(1): 12320, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444397

RESUMEN

Aerobic exercise prevents age-dependent decline in cognition and hippocampal neurogenesis. The transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) mediates many of the exercise-induced benefits in skeletal muscle, including the release of factors into the circulation with neurotrophic effects. We use a transgenic mouse model with muscle-specific overexpression of PGC-1α to study the contribution of chronic muscle activation on exercise-induced effects on hippocampal neurogenesis in aging. Young and old transgenic and wild type animals of both sexes displayed a robust age-related reduction in newborn BrdU+-cells, immature neurons (DCX+-cells) and new mature BrdU+/NeuN+-neurons in the dentate gyrus. No differences were detected between genotypes or sexes. Analysis of serum proteins showed a tendency towards increased levels of myokines and reduced levels of pro-inflammatory cytokines for transgenic animals, but only musclin was found to be significantly up-regulated in transgenic animals. We conclude that constitutive muscular overexpression of PGC-1α, despite potent systemic changes, is insufficient for mimicking exercise-induced effects on hippocampal neurogenesis in aging. Continued studies are required to investigate the complex molecular mechanisms by which circulating signals could mediate exercise-induced effects on the central nervous system in disease and aging, with the aim of discovering new therapeutic possibilities for patients.


Asunto(s)
Envejecimiento/patología , Músculo Esquelético/metabolismo , Neurogénesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Citocinas/metabolismo , Proteína Doblecortina , Femenino , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Reproducibilidad de los Resultados
7.
Neuroscience ; 384: 314-328, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859976

RESUMEN

Physical exercise can improve morphological outcomes after ischemic stroke and ameliorate irradiation-induced reduction of hippocampal neurogenesis in rodents, but the mechanisms underlying these effects remain largely unknown. The transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is considered to be one of the central factors responsible for exercise-induced benefits in skeletal muscle, including the release of neurotrophic factors into the circulation. In order to test if PGC-1α overexpression in skeletal muscle could simulate the exercise-induced effects on recovery after cranial irradiation and stroke, we used male adult transgenic mice overexpressing murine PGC-1α under the control of muscle creatinine kinase promoter and subjected them to either whole brain irradiation at a dose of 4 Gy or photothrombotic stroke to the sensory motor cortex. Muscular PGC-1α overexpression did not ameliorate irradiation-induced reduction of newborn BrdU-labeled cells in the dentate gyrus, immature neurons, or newborn mature neurons. In the stroke model, muscular overexpression of PGC-1α resulted in an increased infarct size without any changes in microglia activation or reactive astrocytosis. No difference could be detected in the number of migrating neural progenitor cells from the subventricular zone to the lesioned neocortex or in vascular density of the contralateral neocortex in comparison to wildtype animals. We conclude that forced muscular overexpression of PGC-1α does not have a beneficial effect on hippocampal neurogenesis after irradiation, but rather a detrimental effect on the infarct volume after stroke in mice. This suggests that artificial muscle activation through the PGC-1α pathway is not sufficient to mimic exercise-induced recovery after cranial irradiation and stroke.


Asunto(s)
Encéfalo/efectos de la radiación , Irradiación Craneana , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA