Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6392-6405, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38676944

RESUMEN

We report that the Escherichia coli chromosome includes novel GC-rich genomic structural elements that trigger formation of post-replication gaps upon replisome passage. The two nearly perfect 222 bp repeats, designated Replication Risk Sequences or RRS, are each 650 kb from the terminus sequence dif and flank the Ter macrodomain. RRS sequence and positioning is highly conserved in enterobacteria. At least one RRS appears to be essential unless a 200 kb region encompassing one of them is amplified. The RRS contain a G-quadruplex on the lagging strand which impedes DNA polymerase extension producing lagging strand ssDNA gaps, $ \le$2000 bp long, upon replisome passage. Deletion of both RRS elements has substantial effects on global genome structure and topology. We hypothesize that RRS elements serve as topological relief valves during chromosome replication and segregation. There have been no screens for genomic sequences that trigger transient gap formation. Functional analogs of RRS could be widespread, possibly including some enigmatic G-quadruplexes in eukaryotes.


Asunto(s)
Replicación del ADN , Escherichia coli , G-Cuádruplex , Genoma Bacteriano , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
2.
Nucleic Acids Res ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39413207

RESUMEN

The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V. Here, we show that even under tight transcriptional and post-transcriptional regulation imposed by host bacteria and the R391 ICE itself, Rum pol rapidly accelerates development of multidrug resistance (CIPR, RifR, AmpR) in E. coli in response to SOS-inducing Ab and non-Ab external stressors bleomycin (BLM), ciprofloxacin (CIP) and UV radiation. The impact of Rum pol on the rate of acquisition of drug resistance appears to surpass potential contributions from other cellular processes. We have shown that RecA protein plays a central role in controlling the ability of Rum pol to accelerate antibiotic resistance. A single amino acid substitution in RecA, M197D, acts as a 'Master Regulator' that effectively eliminates the Rum pol-induced Ab resistance. We suggest that Rum pol should be considered as one of the major factors driving development of de novo Ab resistance in pathogens carrying SXT/R391 ICEs.

3.
Nucleic Acids Res ; 51(11): 5527-5546, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37070184

RESUMEN

Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated 'ssGap-seq', we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrounds. Some results are expected. During log phase growth, RecA and SSB assembly profiles coincide globally, concentrated on the lagging strand and enhanced after UV irradiation. Unexpected results also abound. Near the terminus, RecA binding is favored over SSB, binding patterns change in the absence of RecG, and the absence of XerD results in massive RecA assembly. RecA may substitute for the absence of XerCD to resolve chromosome dimers. A RecA loading pathway may exist that is independent of RecBCD and RecFOR. Two prominent and focused peaks of RecA binding revealed a pair of 222 bp and GC-rich repeats, equidistant from dif and flanking the Ter domain. The repeats, here named RRS for replication risk sequence, trigger a genomically programmed generation of post-replication gaps that may play a special role in relieving topological stress during replication termination and chromosome segregation. As demonstrated here, ssGap-seq provides a new window on previously inaccessible aspects of ssDNA metabolism.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Rec A Recombinasas , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Integrasas/genética , Rec A Recombinasas/metabolismo
4.
Biochemistry ; 63(11): 1412-1422, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780930

RESUMEN

The catalytic function of DNA polymerase ß (pol ß) fulfills the gap-filling requirement of the base excision DNA repair pathway by incorporating a single nucleotide into a gapped DNA substrate resulting from the removal of damaged DNA bases. Most importantly, pol ß can select the correct nucleotide from a pool of similarly structured nucleotides to incorporate into DNA in order to prevent the accumulation of mutations in the genome. Pol ß is likely to employ various mechanisms for substrate selection. Here, we use dCTP analogues that have been modified at the ß,γ-bridging group of the triphosphate moiety to monitor the effect of leaving group basicity of the incoming nucleotide on precatalytic conformational changes, which are important for catalysis and selectivity. It has been previously shown that there is a linear free energy relationship between leaving group pKa and the chemical transition state. Our results indicate that there is a similar relationship with the rate of a precatalytic conformational change, specifically, the closing of the fingers subdomain of pol ß. In addition, by utilizing analogue ß,γ-CHX stereoisomers, we identified that the orientation of the ß,γ-bridging group relative to R183 is important for the rate of fingers closing, which directly influences chemistry.


Asunto(s)
ADN Polimerasa beta , Conformación Proteica , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética , Humanos , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxicitosina/química , Especificidad por Sustrato , Modelos Moleculares , Cinética , ADN/metabolismo , ADN/química , Reparación del ADN
5.
Nucleic Acids Res ; 50(2): 937-951, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34951472

RESUMEN

Single-stranded (ss) gapped regions in bacterial genomes (gDNA) are formed on W- and C-strands during replication, repair, and recombination. Using non-denaturing bisulfite treatment to convert C to U on ssDNA, combined with deep sequencing, we have mapped gDNA gap locations, sizes, and distributions in Escherichia coli for cells grown in mid-log phase in the presence and absence of UV irradiation, and in stationary phase cells. The fraction of ssDNA on gDNA is similar for W- and C-strands, ∼1.3% for log phase cells, ∼4.8% for irradiated log phase cells, and ∼8.5% for stationary phase cells. After UV irradiation, gaps increased in numbers and average lengths. A monotonic reduction in ssDNA occurred symmetrically between the DNA replication origin of (OriC) and terminus (Ter) for log phase cells with and without UV, a hallmark feature of DNA replication. Stationary phase cells showed no OriC → Ter ssDNA gradient. We have identified a spatially diverse gapped DNA landscape containing thousands of highly enriched 'hot' ssDNA regions along with smaller numbers of 'cold' regions. This analysis can be used for a wide variety of conditions to map ssDNA gaps generated when DNA metabolic pathways have been altered, and to identify proteins bound in the gaps.


Asunto(s)
ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Replicación del ADN , Unión Proteica
6.
Nucleic Acids Res ; 50(20): 11738-11754, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321646

RESUMEN

We describe a purified biochemical system to produce monoclonal antibodies (Abs) in vitro using activation-induced deoxycytidine deaminase (AID) and DNA polymerase η (Polη) to diversify immunoglobulin variable gene (IgV) libraries within a phage display format. AID and Polη function during B-cell affinity maturation by catalyzing somatic hypermutation (SHM) of immunoglobulin variable genes (IgV) to generate high-affinity Abs. The IgV mutational motif specificities observed in vivo are conserved in vitro. IgV mutations occurred in antibody complementary determining regions (CDRs) and less frequently in framework (FW) regions. A unique feature of our system is the use of AID and Polη to perform repetitive affinity maturation on libraries reconstructed from a preceding selection step. We have obtained scFv Abs against human glucagon-like peptide-1 receptor (GLP-1R), a target in the treatment of type 2 diabetes, and VHH nanobodies targeting Fatty Acid Amide Hydrolase (FAAH), involved in chronic pain, and artemin, a neurotropic factor that regulates cold pain. A round of in vitro affinity maturation typically resulted in a 2- to 4-fold enhancement in Ab-Ag binding, demonstrating the utility of the system. We tested one of the affinity matured nanobodies and found that it reduced injury-induced cold pain in a mouse model.


Asunto(s)
Anticuerpos de Cadena Única , Anticuerpos de Dominio Único , Hipermutación Somática de Inmunoglobulina , Animales , Humanos , Ratones , Afinidad de Anticuerpos/genética , Citidina Desaminasa/metabolismo , Diabetes Mellitus Tipo 2 , Región Variable de Inmunoglobulina/genética , Dolor , Anticuerpos de Dominio Único/genética , Anticuerpos de Cadena Única/genética
7.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736210

RESUMEN

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Asunto(s)
Escherichia coli , Mutágenos , Rec A Recombinasas , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Filogenia , Rec A Recombinasas/metabolismo
8.
Nucleic Acids Res ; 48(15): 8490-8508, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32687193

RESUMEN

Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Polimerasa beta/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/ultraestructura , Rec A Recombinasas/genética , Ciprofloxacina/farmacología , Daño del ADN/efectos de los fármacos , ADN Polimerasa beta/genética , Reparación del ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/genética , Imagen Individual de Molécula
9.
PLoS Genet ; 15(2): e1007956, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716079

RESUMEN

Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo , Adenosina Trifosfato/metabolismo , Daño del ADN , ADN Bacteriano/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Genes Bacterianos , Cinética , Mutación , Conformación Proteica , Respuesta SOS en Genética
10.
Nucleic Acids Res ; 47(20): 10815-10829, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31566237

RESUMEN

Activation-induced deoxycytidine deaminase (AID) initiates somatic hypermutation (SHM) in immunoglobulin variable (IgV) genes to produce high-affinity antibodies. SHM requires IgV transcription by RNA polymerase II (Pol II). A eukaryotic transcription system including AID has not been reported previously. Here, we reconstitute AID-catalyzed deamination during Pol II transcription elongation in conjunction with DSIF transcription factor. C→T mutations occur at similar frequencies on non-transcribed strand (NTS) and transcribed strand (TS) DNA. In contrast, bacteriophage T7 Pol generates NTS mutations predominantly. AID-Pol II mutations are strongly favored in WRC and WGCW overlapping hot motifs (W = A or T, R = A or G) on both DNA strands. Single mutations occur on 70% of transcribed DNA clones. Mutations are correlated over a 15 nt distance in multiply mutated clones, suggesting that deaminations are catalyzed processively within a stalled or backtracked transcription bubble. Site-by-site comparisons for biochemical and human memory B-cell mutational spectra in an IGHV3-23*01 target show strongly favored deaminations occurring in the antigen-binding complementarity determining regions (CDR) compared to the framework regions (FW). By exhibiting consistency with B-cell SHM, our in vitro data suggest that biochemically defined reconstituted Pol II transcription systems can be used to investigate how, when and where AID is targeted.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN/genética , Región Variable de Inmunoglobulina/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Desaminación , Células HeLa , Humanos , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/metabolismo , Especificidad por Sustrato , Factores de Elongación Transcripcional/metabolismo , Proteínas Virales/metabolismo
11.
Nucleic Acids Res ; 47(22): 11839-11849, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31732732

RESUMEN

DNA polymerase ß (pol ß) selects the correct deoxyribonucleoside triphosphate for incorporation into the DNA polymer. Mistakes made by pol ß lead to mutations, some of which occur within specific sequence contexts to generate mutation hotspots. The adenomatous polyposis coli (APC) gene is mutated within specific sequence contexts in colorectal carcinomas but the underlying mechanism is not fully understood. In previous work, we demonstrated that a somatic colon cancer variant of pol ß, K289M, misincorporates deoxynucleotides at significantly increased frequencies over wild-type pol ß within a mutation hotspot that is present several times within the APC gene. Kinetic studies provide evidence that the rate-determining step of pol ß catalysis is phosphodiester bond formation and suggest that substrate selection is governed at this step. Remarkably, we show that, unlike WT, a pre-catalytic step in the K289M pol ß kinetic pathway becomes slower than phosphodiester bond formation with the APC DNA sequence but not with a different DNA substrate. Based on our studies, we propose that pre-catalytic conformational changes are of critical importance for DNA polymerase fidelity within specific DNA sequence contexts.


Asunto(s)
ADN Polimerasa beta/metabolismo , Replicación del ADN/fisiología , Poliposis Adenomatosa del Colon/genética , Sustitución de Aminoácidos/genética , Secuencia de Bases , Catálisis , Neoplasias del Colon/genética , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Enlace de Hidrógeno , Cinética , Lisina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Especificidad por Sustrato , Moldes Genéticos
12.
PLoS Genet ; 14(1): e1007161, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351274

RESUMEN

In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.


Asunto(s)
ADN Polimerasa beta/fisiología , Replicación del ADN , Escherichia coli/genética , Sitios de Unión/genética , Daño del ADN/genética , ADN Polimerasa beta/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Fusión Génica , Respuesta SOS en Genética/genética
13.
Biochemistry ; 59(8): 955-963, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999437

RESUMEN

The human DNA polymerase (pol) ß cancer variant K289M has altered polymerase activity in vitro, and the structure of wild-type pol ß reveals that the K289 side chain contributes to a network of stabilizing interactions in a C-terminal region of the enzyme distal to the active site. Here, we probed the capacity of the K289M variant to tolerate strain introduced within the C-terminal region and active site. Strain was imposed by making use of a dGTP analogue containing a CF2 group substitution for the ß-γ bridging oxygen atom. The ternary complex structure of the K289M variant displays an alteration in the C-terminal region, whereas the structure of wild-type pol ß is not altered in the presence of the dGTP CF2 analogue. The alteration in the K289M variant impacts the active site, because the enzyme in the ternary complex fails to adopt the normal open to closed conformational change and assembly of the catalytically competent active site. These results reveal the importance of the K289-mediated stabilizing network in the C-terminal region of pol ß and suggest an explanation for why the K289M cancer variant is deficient in polymerase activity even though the position 289 side chain is distal to the active site.


Asunto(s)
ADN Polimerasa beta/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Dominios Proteicos
14.
Biochemistry ; 58(13): 1764-1773, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30839203

RESUMEN

Deoxynucleotide misincorporation efficiencies can span a wide 104-fold range, from ∼10-2 to ∼10-6, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-ß,γ substrate analogues in which the pyrophosphate leaving group (p Ka4 = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p Ka4 values from 7.8 (CF2) to 12.3 [C(CH3)2]. Here, we have used a linear free energy relationship (LFER) analysis, in the form of a Brønsted plot of log( kpol) versus p Ka4, for Y-family error-prone pol η and X-family pols λ and ß to determine the extent to which different electrostatic active site environments alter kpol values. The apparent chemical rate constant ( kpol) is the rate-determining step for the three pols. The pols each exhibit a distinct catalytic signature that differs for formation of right (A·T) and wrong (G·T) incorporations observed as changes in slopes and displacements of the Brønsted lines, in relation to a reference LFER. Common to this signature among all three pols is a split linear pattern in which the analogues containing two halogens show kpol values that are systematically lower than would be predicted from their p Ka4 values measured in aqueous solution. We discuss how metal ions and active site amino acids are responsible for causing "effective" p Ka4 values that differ for dihalo and non-dihalo substrates as well as for individual R and S stereoisomers for CHF and CHCl.


Asunto(s)
ADN Polimerasa beta/metabolismo , ADN Polimerasa gamma/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Emparejamiento Base , Dominio Catalítico , ADN Polimerasa beta/química , ADN Polimerasa gamma/química , ADN Polimerasa Dirigida por ADN/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Especificidad por Sustrato , Termodinámica
15.
J Phys Chem A ; 123(13): 3030-3037, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30848911

RESUMEN

Activation-induced deoxycytidine deaminase (AID) is a key enzyme in the human immune system. AID binds to and catalyzes random point mutations on the immunoglobulin (Ig) gene, leading to diversification of the Ig gene sequence by random walk motions, scanning for cytidines and turning them to uracils. The mutation patterns deposited by AID on its substrate DNA sequences can be interpreted as random binary words, and the information content of this stochastically generated library of mutated DNA sequences can be measured by its entropy. In this paper, we derive an analytical formula for this entropy and show that the stochastic scanning + catalytic dynamics of AID is controlled by a characteristic length that depends on the diffusion coefficient of AID and the catalytic rate. Experiments showed that the deamination rates have a sequence context dependence, where mutations are generated at higher intensities on DNA sequences with higher densities of mutable sites. We derive an isomorphism between this classical system and a quantum mechanical model and use this isomorphism to explain why AID appears to focus its scanning on regions with higher concentrations of deaminable sites. Using path integral Monte Carlo simulations of the quantum isomorphic system, we demonstrate how AID's scanning indeed depends on the context of the DNA sequence and how this affects the entropy of the library of generated mutant clones. Examining detailed features in the entropy of the experimentally generated clone library, we provide clear evidence that the random walk of AID on its substrate DNA is focused near hot spots. The model calculations applied to the experimental data show that the observed per-site mutation frequencies display similar contextual dependences as observed in the experiments, in which hot motifs are located adjacent to several different types of hot and cold motifs.


Asunto(s)
Citidina Desaminasa/metabolismo , Entropía , Teoría Cuántica , Secuencia de Aminoácidos , Biocatálisis , Citidina Desaminasa/química , Citidina Desaminasa/genética , Difusión , Mutación , Procesos Estocásticos
16.
Nature ; 554(7691): 180-181, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32094545
17.
Nature ; 554(7691): 180-181, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29420502

Asunto(s)
ADN/química , Mutación
18.
Proc Natl Acad Sci U S A ; 113(16): E2277-85, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044101

RESUMEN

What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.


Asunto(s)
Emparejamiento Base , ADN Polimerasa Dirigida por ADN/química , ADN/química , Modelos Químicos , Termodinámica , Cinética
19.
Biochemistry ; 57(26): 3934-3944, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29874056

RESUMEN

We report high-resolution crystal structures of DNA polymerase (pol) ß in ternary complex with a panel of incoming dNTPs carrying acidity-modified 5'-triphosphate groups. These novel dNTP analogues have a variety of halomethylene substitutions replacing the bridging oxygen between Pß and Pγ of the incoming dNTP, whereas other analogues have alkaline substitutions at the bridging oxygen. Use of these analogues allows the first systematic comparison of effects of 5'-triphosphate acidity modification on active site structures and the rate constant of DNA synthesis. These ternary complex structures with incoming dATP, dTTP, and dCTP analogues reveal the enzyme's active site is not grossly altered by the acidity modifications of the triphosphate group, yet with analogues of all three incoming dNTP bases, subtle structural differences are apparent in interactions around the nascent base pair and at the guanidinium groups of active site arginine residues. These results are important for understanding how acidity modification of the incoming dNTP's 5'-triphosphate can influence DNA polymerase activity and the significance of interactions at arginines 183 and 149 in the active site.


Asunto(s)
ADN Polimerasa beta/química , Desoxirribonucleótidos/química , Dominio Catalítico , Humanos , Relación Estructura-Actividad
20.
Biochemistry ; 57(26): 3925-3933, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29889506

RESUMEN

We examine the DNA polymerase ß (pol ß) transition state (TS) from a leaving group pre-steady-state kinetics perspective by measuring the rate of incorporation of dNTPs and corresponding novel ß,γ-CXY-dNTP analogues, including individual ß,γ-CHF and -CHCl diastereomers with defined stereochemistry at the bridging carbon, during the formation of right (R) and wrong (W) base pairs. Brønsted plots of log kpol versus p Ka4 of the leaving group bisphosphonic acids are used to interrogate the effects of the base identity, the dNTP analogue leaving group basicity, and the precise configuration of the C-X atom in R and S stereoisomers on the rate-determining step ( kpol). The dNTP analogues provide a range of leaving group basicity and steric properties by virtue of monohalogen, dihalogen, or methyl substitution at the carbon atom bridging the ß,γ-bisphosphonate that mimics the natural pyrophosphate leaving group in dNTPs. Brønsted plot relationships with negative slopes are revealed by the data, as was found for the dGTP and dTTP analogues, consistent with a bond-breaking component to the TS energy. However, greater multiplicity was shown in the linear free energy relationship, revealing an unexpected dependence on the nucleotide base for both A and C. Strong base-dependent perturbations that modulate TS relative to ground-state energies are likely to arise from electrostatic effects on catalysis in the pol active site. Deviations from a uniform linear Brønsted plot relationship are discussed in terms of insights gained from structural features of the prechemistry DNA polymerase active site.


Asunto(s)
ADN Polimerasa beta/química , ADN/biosíntesis , Catálisis , Dominio Catalítico , ADN/química , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA