Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 141(5): 786-98, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510926

RESUMEN

Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets but distinct from bundles formed by espin, an actin crosslinker in stereocilia. We generated mutant Triobp mice (Triobp(Deltaex8/Deltaex8)) that are profoundly deaf. Stereocilia of Triobp(Deltaex8/Deltaex8) mice develop normally but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Sordera/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Células Ciliadas Auditivas Internas/citología , Humanos , Mecanotransducción Celular , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular
2.
J Physiol ; 599(7): 2015-2036, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559882

RESUMEN

KEY POINTS: The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT: The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 µM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.


Asunto(s)
Estereocilios , Membrana Tectoria , Animales , Matriz Extracelular , Células Ciliadas Auditivas Externas , Ratones , Emisiones Otoacústicas Espontáneas , Transductores
3.
J Physiol ; 598(18): 3891-3910, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32608086

RESUMEN

KEY POINTS: Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT: Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.


Asunto(s)
Células Ciliadas Auditivas Externas , Emisiones Otoacústicas Espontáneas , Animales , Cadherinas , Cóclea , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
4.
Development ; 144(21): 3978-3989, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28935705

RESUMEN

The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.


Asunto(s)
Polaridad Celular/genética , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Colágenos Fibrilares/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Tectoria/embriología , Membrana Tectoria/metabolismo , Animales , Cilios/metabolismo , Cilios/ultraestructura , Epitelio/embriología , Epitelio/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones Noqueados , Modelos Biológicos , Órgano Espiral/metabolismo , Membrana Tectoria/ultraestructura
5.
J Neurosci Res ; 98(9): 1745-1763, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31762086

RESUMEN

The aging cochlea is subjected to a number of pathological changes to play a role in the onset of age-related hearing loss (ARHL). Although ARHL has often been thought of as the result of the loss of hair cells, it is in fact a disorder with a complex etiology, arising from the changes to both the organ of Corti and its supporting structures. In this study, we examine two aging pathologies that have not been studied in detail despite their apparent prevalence; the fusion, elongation, and engulfment of cochlear inner hair cell stereocilia, and the changes that occur to the tectorial membrane (TM), a structure overlying the organ of Corti that modulates its physical properties in response to sound. Our work demonstrates that similar pathological changes occur in these two structures in the aging cochleae of both mice and humans, examines the ultrastructural changes that underlie stereocilial fusion, and identifies the lost TM components that lead to changes in membrane structure. We place these changes into the context of the wider pathology of the aging cochlea, and identify how they may be important in particular for understanding the more subtle hearing pathologies that precede auditory threshold loss in ARHL.


Asunto(s)
Envejecimiento/fisiología , Cóclea/patología , Pérdida Auditiva/etiología , Estereocilios/patología , Membrana Tectoria/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cóclea/ultraestructura , Femenino , Células Ciliadas Auditivas , Audición , Humanos , Masculino , Ratones , Ratones Endogámicos CBA , Persona de Mediana Edad , Órgano Espiral , Estereocilios/ultraestructura , Membrana Tectoria/fisiología , Membrana Tectoria/ultraestructura
6.
J Physiol ; 594(13): 3667-81, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27111754

RESUMEN

KEY POINTS: The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli. In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles. We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop. We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. ABSTRACT: Mutations in Myo6, the gene encoding the (F-actin) minus end-directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells' apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano-electrical transduction. We report that Ca(2+) -dependent adaptation of the mechano-electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links, fails to be downregulated along the length of the stereocilia in maturing Myo6 mutant mice. MET currents of heterozygous littermates appear normal. We propose that myosin VI, by removing key molecules from developing hair bundles, is required for the development of the MET apparatus and its Ca(2+) -dependent adaptation.


Asunto(s)
Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Mecanotransducción Celular/fisiología , Cadenas Pesadas de Miosina/fisiología , Animales , Calcio/fisiología , Ratones , Ratones Mutantes , Cadenas Pesadas de Miosina/genética
7.
Hum Mol Genet ; 23(10): 2551-68, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24363064

RESUMEN

Tecta is a modular, non-collagenous protein of the tectorial membrane (TM), an extracellular matrix of the cochlea essential for normal hearing. Missense mutations in Tecta cause dominant forms of non-syndromic deafness and a genotype-phenotype correlation has been reported in humans, with mutations in different Tecta domains causing mid- or high-frequency hearing impairments that are either stable or progressive. Three mutant mice were created as models for human Tecta mutations; the Tecta(L1820F,G1824D/+) mouse for zona pellucida (ZP) domain mutations causing stable mid-frequency hearing loss in a Belgian family, the Tecta(C1837G/+) mouse for a ZP-domain mutation underlying progressive mid-frequency hearing loss in a Spanish family and the Tecta(C1619S/+) mouse for a zonadhesin-like (ZA) domain mutation responsible for progressive, high-frequency hearing loss in a French family. Mutations in the ZP and ZA domains generate distinctly different changes in the structure of the TM. Auditory brainstem response thresholds in the 8-40 kHz range are elevated by 30-40 dB in the ZP-domain mutants, whilst those in the ZA-domain mutant are elevated by 20-30 dB. The phenotypes are stable and no evidence has been found for a progressive deterioration in TM structure or auditory function. Despite elevated auditory thresholds, the Tecta mutant mice all exhibit an enhanced tendency to have audiogenic seizures in response to white noise stimuli at low sound pressure levels (≤84 dB SPL), revealing a previously unrecognised consequence of Tecta mutations. These results, together with those from previous studies, establish an allelic series for Tecta unequivocally demonstrating an association between genotype and phenotype.


Asunto(s)
Sordera/genética , Proteínas de la Matriz Extracelular/genética , Membrana Tectoria/patología , Estimulación Acústica , Animales , Sordera/patología , Sordera/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Refleja/genética , Femenino , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Internas/patología , Homocigoto , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Transgénicos , Proteínas Motoras Moleculares/metabolismo , Mutación Missense , Órgano Espiral/patología , Fenotipo , Membrana Tectoria/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(34): 13898-903, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918390

RESUMEN

Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss.


Asunto(s)
Células Ciliadas Auditivas/patología , Pérdida Auditiva/genética , Proteínas de Microfilamentos/deficiencia , Análisis de Varianza , Animales , Audiometría de Respuesta Evocada , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas/ultraestructura , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Microscopía Electrónica , Técnicas de Placa-Clamp
9.
J Neurosci ; 34(31): 10325-38, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080593

RESUMEN

α-Tectorin (TECTA), ß-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Órgano Espiral/citología , Emisiones Otoacústicas Espontáneas/fisiología , Membrana Tectoria/fisiología , Estimulación Acústica , Animales , Moléculas de Adhesión Celular/genética , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inmunoprecipitación , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Emisiones Otoacústicas Espontáneas/genética , Técnicas de Placa-Clamp , Membrana Tectoria/ultraestructura , beta-Galactosidasa/metabolismo
10.
Am J Hum Genet ; 91(5): 919-27, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23084290

RESUMEN

A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.


Asunto(s)
Exorribonucleasas/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Transporte de ARN/genética , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Mapeo Cromosómico , Cóclea/metabolismo , Cóclea/patología , Consanguinidad , Exones , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Femenino , Expresión Génica , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Conformación Proteica , ARN Mitocondrial , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(47): 19351-6, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129639

RESUMEN

The gene causative for the human nonsyndromic recessive form of deafness DFNB22 encodes otoancorin, a 120-kDa inner ear-specific protein that is expressed on the surface of the spiral limbus in the cochlea. Gene targeting in ES cells was used to create an EGFP knock-in, otoancorin KO (Otoa(EGFP/EGFP)) mouse. In the Otoa(EGFP/EGFP) mouse, the tectorial membrane (TM), a ribbon-like strip of ECM that is normally anchored by one edge to the spiral limbus and lies over the organ of Corti, retains its general form, and remains in close proximity to the organ of Corti, but is detached from the limbal surface. Measurements of cochlear microphonic potentials, distortion product otoacoustic emissions, and basilar membrane motion indicate that the TM remains functionally attached to the electromotile, sensorimotor outer hair cells of the organ of Corti, and that the amplification and frequency tuning of the basilar membrane responses to sounds are almost normal. The compound action potential masker tuning curves, a measure of the tuning of the sensory inner hair cells, are also sharply tuned, but the thresholds of the compound action potentials, a measure of inner hair cell sensitivity, are significantly elevated. These results indicate that the hearing loss in patients with Otoa mutations is caused by a defect in inner hair cell stimulation, and reveal the limbal attachment of the TM plays a critical role in this process.


Asunto(s)
Estimulación Acústica , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Sensorineural/patología , Potenciales de Acción , Animales , Membrana Basilar/patología , Membrana Basilar/fisiopatología , Cóclea/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Exones/genética , Proteínas Ligadas a GPI/genética , Marcación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Humanos , Ratones , Microscopía de Interferencia , Mutagénesis Insercional/genética , Mutación/genética , Fenotipo , Membrana Tectoria/patología , Membrana Tectoria/fisiopatología
12.
Nature ; 456(7219): 255-8, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18849963

RESUMEN

Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estimulación Acústica , Animales , Femenino , Regulación de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/ultraestructura , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados
13.
Proc Natl Acad Sci U S A ; 108(14): 5825-30, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436032

RESUMEN

The mechanotransducer channels of auditory hair cells are gated by tip-links, oblique filaments that interconnect the stereocilia of the hair bundle. Tip-links stretch from the tips of stereocilia in the short and middle rows to the sides of neighboring, taller stereocilia. They are made of cadherin-23 and protocadherin-15, products of the Usher syndrome type 1 genes USH1D and USH1F, respectively. In this study we address the role of sans, a putative scaffold protein and product of the USH1G gene. In Ush1g(-/-) mice, the cohesion of stereocilia is disrupted, and both the amplitude and the sensitivity of the transduction currents are reduced. In Ush1g(fl/fl)Myo15-cre(+/-) mice, the loss of sans occurs postnatally and the stereocilia remain cohesive. In these mice, there is a decrease in the amplitude of the total transducer current with no loss in sensitivity, and the tips of the stereocilia in the short and middle rows lose their prolate shape, features that can be attributed to the loss of tip-links. Furthermore, stereocilia from these rows undergo a dramatic reduction in length, suggesting that the mechanotransduction machinery has a positive effect on F-actin polymerization. Sans interacts with the cytoplasmic domains of cadherin-23 and protocadherin-15 in vitro and is absent from the hair bundle in mice defective for either of the two cadherins. Because sans localizes mainly to the tips of short- and middle-row stereocilia in vivo, we conclude that it belongs to a molecular complex at the lower end of the tip-link and plays a critical role in the maintenance of this link.


Asunto(s)
Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Proteínas Relacionadas con las Cadherinas , Cadherinas/metabolismo , Cilios/metabolismo , Electrofisiología , Técnica del Anticuerpo Fluorescente , Vectores Genéticos/genética , Células Ciliadas Auditivas/ultraestructura , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Proteínas del Tejido Nervioso/genética , Polimerizacion , Precursores de Proteínas/metabolismo , Transducción de Señal/genética
14.
Proc Natl Acad Sci U S A ; 108(10): 4218-23, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368133

RESUMEN

We report on a secreted protein found in mammalian cochlear outer hair cells (OHC) that is a member of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of adhesion proteins. Ceacam16 mRNA is expressed in OHC, and its protein product localizes to the tips of the tallest stereocilia and the tectorial membrane (TM). This specific localization suggests a role in maintaining the integrity of the TM as well as in the connection between the OHC stereocilia and TM, a linkage essential for mechanical amplification. In agreement with this role, CEACAM16 colocalizes and coimmunoprecipitates with the TM protein α-tectorin. In addition, we show that mutation of CEACAM16 leads to autosomal dominant nonsyndromic deafness (ADNSHL) at the autosomal dominant hearing loss (DFNA4) locus. In aggregate, these data identify CEACAM16 as an α-tectorin-interacting protein that concentrates at the point of attachment of the TM to the stereocilia and, when mutated, results in ADNSHL at the DFNA4 locus.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Genes Dominantes , Pérdida Auditiva/metabolismo , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo II/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Proteínas Ligadas a GPI/metabolismo , Pérdida Auditiva/genética , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética
15.
J Neurosci ; 32(8): 2762-72, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22357859

RESUMEN

Recent studies have shown that mutations in PTPRQ, a gene encoding a receptor-like inositol lipid phosphatase, cause recessive, nonsyndromic, hereditary hearing loss with associated vestibular dysfunction. Although null mutations in Ptprq cause the loss of high-frequency auditory hair cells and deafness in mice, a loss of vestibular hair cells and overt behavioral defects characteristic of vestibular dysfunction have not been described. Hair bundle structure and vestibular function were therefore examined in Ptprq mutant mice. Between postnatal days 5 and 16, hair bundles in the extrastriolar regions of the utricle in Ptprq(-/-) mice become significantly longer than those in heterozygous controls. This increase in length (up to 50%) is accompanied by the loss and fusion of stereocilia. Loss and fusion of stereocilia also occurs in the striolar region of the utricle in Ptprq(-/-) mice, but is not accompanied by hair bundle elongation. These abnormalities persist until 12 months of age but are not accompanied by significant hair cell loss. Hair bundle defects are also observed in the saccule and ampullae of Ptprq(-/-) mice. At ∼3 months of age, vestibular evoked potentials were absent from the majority (12 of 15) of Ptprq(-/-) mice examined, and could only be detected at high stimulus levels in the other 3 mutants. Subtle but distinct defects in swimming behavior were detected in most (seven of eight) mutants tested. The results reveal a distinct phenotype in the vestibular system of Ptprq(-/-) mice and suggest similar hair bundle defects may underlie the vestibular dysfunction reported in humans with mutations in PTPRQ.


Asunto(s)
Potenciales Evocados Auditivos/fisiología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/ultraestructura , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/deficiencia , Enfermedades Vestibulares , Estimulación Acústica/métodos , Actinas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica , Mutación/genética , Faloidina/metabolismo , Psicoacústica , Receptores Acoplados a Proteínas G/genética , Estereocilios/patología , Estereocilios/ultraestructura , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/fisiopatología
16.
J Assoc Res Otolaryngol ; 24(2): 147-157, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725777

RESUMEN

PURPOSE: A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea. METHODS: Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy. RESULTS: The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining. CONCLUSION: The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.


Asunto(s)
Membrana Basilar , Membrana Tectoria , Animales , Membrana Basilar/metabolismo , Gerbillinae , Membrana Tectoria/química , Membrana Tectoria/metabolismo , Cóclea/metabolismo , Colágeno/análisis , Colágeno/metabolismo , Células Ciliadas Auditivas/química
17.
Mol Ther Methods Clin Dev ; 26: 355-370, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36034774

RESUMEN

The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.

18.
Nat Neurosci ; 10(2): 215-23, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17220887

RESUMEN

Frequency tuning in the cochlea is determined by the passive mechanical properties of the basilar membrane and active feedback from the outer hair cells, sensory-effector cells that detect and amplify sound-induced basilar membrane motions. The sensory hair bundles of the outer hair cells are imbedded in the tectorial membrane, a sheet of extracellular matrix that overlies the cochlea's sensory epithelium. The tectorial membrane contains radially organized collagen fibrils that are imbedded in an unusual striated-sheet matrix formed by two glycoproteins, alpha-tectorin (Tecta) and beta-tectorin (Tectb). In Tectb(-/-) mice the structure of the striated-sheet matrix is disrupted. Although these mice have a low-frequency hearing loss, basilar-membrane and neural tuning are both significantly enhanced in the high-frequency regions of the cochlea, with little loss in sensitivity. These findings can be attributed to a reduction in the acting mass of the tectorial membrane and reveal a new function for this structure in controlling interactions along the cochlea.


Asunto(s)
Cóclea/anomalías , Pérdida Auditiva Sensorineural/fisiopatología , Audición/genética , Percepción de la Altura Tonal , Membrana Tectoria/anomalías , Animales , Membrana Basilar/anomalías , Membrana Basilar/metabolismo , Membrana Basilar/ultraestructura , Células Cultivadas , Quimera , Cóclea/metabolismo , Cóclea/ultraestructura , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Ligadas a GPI , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Membrana Tectoria/metabolismo , Membrana Tectoria/ultraestructura
19.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33735112

RESUMEN

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Asunto(s)
Aminoglicósidos/efectos adversos , Cóclea/efectos de los fármacos , Ototoxicidad/prevención & control , Animales , Cóclea/citología , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/efectos de los fármacos , Femenino , Gentamicinas/efectos adversos , Gentamicinas/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Masculino , Mecanotransducción Celular/efectos de los fármacos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Factor de Transcripción Asociado a Microftalmía/genética , Neomicina/efectos adversos , Técnicas de Cultivo de Órganos , Ototoxicidad/etiología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
J Neurosci ; 28(40): 9939-52, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829952

RESUMEN

The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasma membrane. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labeled with externally applied annexin V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin V labeling reveals that the aminoglycoside antibiotic neomycin induces rapid PS externalization, specifically on the apical surface of hair cells. PS externalization is observed within approximately 75 s of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application, indicating that blebbing is accompanied by membrane addition to the hair cell surface. PS externalization and membrane blebbing can, nonetheless, occur independently. Pretreating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a phosphatidylinositol 4,5-biphosphate (PIP2)-binding pleckstrin homology domain, can reduce neomycin-induced PS externalization, suggesting that neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. After neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear, and surface-bound annexin V is internalized, distributing throughout the supranuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalized annexin V, however, remains below the apical surface, thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the periphery of the hair cell.


Asunto(s)
Aminoglicósidos/metabolismo , Células Ciliadas Auditivas/química , Células Ciliadas Auditivas/fisiología , Fosfatidilserinas/fisiología , Aminoglicósidos/análisis , Aminoglicósidos/genética , Animales , Células Cultivadas , Cóclea/efectos de los fármacos , Cóclea/fisiología , Femenino , Cobayas , Células Ciliadas Auditivas/efectos de los fármacos , Masculino , Ratones , Ratones Mutantes , Neomicina/metabolismo , Neomicina/farmacología , Fosfatidilserinas/agonistas , Fosfatidilserinas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA