Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 31(6): 553-566, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404630

RESUMEN

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Eliminación de Gen , Genes Supresores de Tumor , Humanos , Neoplasias Mamarias Experimentales/genética , Ratones , Embarazo , Complicaciones Neoplásicas del Embarazo/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fosfatasas cdc25/genética
2.
Biochem J ; 473(21): 4027-4044, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27609814

RESUMEN

The Na+-HCO3- cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms. p95HER2 expression in MCF-7 cells reduced the rate of NBCn1 mRNA degradation. The NBCn1 3'UTR down-regulated luciferase reporter expression in control cells, and this was reversed by p95HER2, suggesting that p95HER2 counteracts 3'UTR-mediated suppression of NBCn1 expression. Truncation analyses identified three NBCn1 3'UTR regions of regulatory importance. Mutation of putative miRNA-binding sites (miR-374a/b, miR-200b/c, miR-29a/b/c, miR-488) in these regions did not have significant impact on 3'UTR activity. The NBCn1 3'UTR interacted directly with the RNA-binding protein human antigen R (HuR), and HuR knockdown reduced NBCn1 expression. Conversely, ablation of a distal AU-rich element increased 3'UTR-driven reporter activity, suggesting complex regulatory roles of these sites. The cancer-associated SNP variant decreased reporter expression in T-47D breast cancer cells, yet not in MCF-7, MDA-MB-231 and SK-BR-3 cells, arguing against a general role in regulating NBCn1 expression. Finally, p95HER2 expression increased total and plasma membrane NBCn1 protein levels and decreased the rate of NBCn1 protein degradation. Collectively, this is the first work to demonstrate 3'UTR-mediated NBCn1 regulation, shows that p95HER2 regulates NBCn1 expression at multiple levels, and substantiates the central position of p95HER2-NBCn1 signaling in breast cancer.


Asunto(s)
Regiones no Traducidas 3'/genética , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Ensayo de Cambio de Movilidad Electroforética , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Células MCF-7 , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/genética , Simportadores de Sodio-Bicarbonato/genética
3.
FASEB J ; 28(1): 350-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24088818

RESUMEN

Misregulation of acid-base transport plays central roles in cancer development. We previously demonstrated the strong up-regulation of the Na(+),HCO3(-) cotransporter NBCn1 (SLC4A7) in MCF-7 breast cancer cells by a truncated, constitutively active ErbB2 (HER2) receptor, ΔNErbB2, and showed that NBCn1 expression and activity are increased in breast cancer tissue from patients. Here, we present the first in-depth characterization of an SLC4A7 promoter and identify its minimal ΔNErbB2-sensitive region. Inhibition or siRNA-mediated knockdown of PI3K, Akt1, ERK1/2, or Src decreased the NBCn1 protein level in ΔNErbB2-expressing MCF-7 cells by ~50, 60, 30 and 35%, respectively. Further, knockdown of the transcription factor Krüppel-like factor 4 (KLF4) reduced NBCn1 protein expression by ~40%, and KLF4 overexpression increased NBCn1 expression by 50-80%. In contrast, knockdown of the closely related transcription factor specificity protein 1 (Sp1) or transfection with dominant-negative Sp1 increased NBCn1 expression by ~35 and ~50%, respectively. NBCn1 expression was also increased by stimulation of full-length ErbB1, -2, and -3 receptors in SKBr3 cells (1.5- and 2-fold by NRG1 or EGF, respectively) or after their exogenous expression in MCF-7 cells. Finally, stimulation with NRG1 or EGF more than doubled acid extrusion capacity in SKBr3 cells. In conclusion, NBCn1 is strongly upregulated by ErbB receptor signaling in a manner involving opposite effects of KLF4 and Sp1, transcription factors with central roles in cancer development. ErbB-induced up-regulation of NBCn1-mediated acid extrusion may play important physiological and pathophysiological roles in the breast epithelium and other tissues with high ErbB receptor levels.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptor ErbB-2/genética , Simportadores de Sodio-Bicarbonato/genética , Intercambiadores de Sodio-Hidrógeno/genética , Familia-src Quinasas/genética
4.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798275

RESUMEN

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.

5.
Sci Signal ; 16(816): eadh3449, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113335

RESUMEN

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Receptores de Interleucina-1 , Animales , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Pez Cebra/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Daño del ADN , Apoptosis
6.
Cell Rep ; 41(8): 111703, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417856

RESUMEN

Macrophages are critical immune cells in inflammatory diseases, and their differentiation and function are tightly regulated by histone modifications. H3K79 methylation is a histone modification associated with active gene expression, and DOT1L is the only histone methyltransferase for H3K79. Here we determine the role of DOT1L in macrophages by applying a selective DOT1L inhibitor in mouse and human macrophages and using myeloid-specific Dot1l-deficient mice. We found that DOT1L directly regulates macrophage function by controlling lipid biosynthesis gene programs including central lipid regulators like sterol regulatory element-binding proteins SREBP1 and SREBP2. DOT1L inhibition also leads to macrophage hyperactivation, which is associated with disrupted SREBP pathways. In vivo, myeloid Dot1l deficiency reduces atherosclerotic plaque stability and increases the activation of inflammatory plaque macrophages. Our data show that DOT1L is a crucial regulator of macrophage inflammatory responses and lipid regulatory pathways and suggest a high relevance of H3K79 methylation in inflammatory disease.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Placa Aterosclerótica , Humanos , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Lípidos
7.
J Cell Physiol ; 226(11): 2857-68, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21302281

RESUMEN

Long-term osmotic stress results in altered gene transcription, however, with the exception of the TonE/TonEBP system, the underlying mechanisms are poorly understood. We previously showed that upon osmotic shrinkage of Ehrlich Lettré Ascites (ELA) fibroblasts, the MEK1-ERK1/2 pathway is transiently inhibited while p38 MAPK is activated, in turn impacting on cell survival (Pedersen et al., 2007, Cell Physiol Biochem 20: 735-750). Here, we show that downstream of these kinases, two transcription factors with major roles in control of cell proliferation and death, serum response factor (SRF) and cAMP response element-binding protein (CREB) are differentially regulated in ELA cells. SRF Ser(103) phosphorylation and SRF-dependent transcriptional activity were strongly augmented 5-30 min and 24 h, respectively, after hyperosmotic stress (50% increase in extracellular ionic strength), in a p38 MAPK-dependent manner. In contrast, CREB Ser(133) was transiently dephosphorylated upon osmotic shrinkage. The ERK1/2 effector ribosomal S kinase (RSK) and the ERK1/2- and p38 MAPK effector mitogen- stress-activated protein kinase 1 (MSK1) both phosphorylate CREB at Ser(133) . RSK and MSK1 were dephosphorylated within 5 min of shrinkage. MSK1 phosphorylation recovered within 30 min in a p38-MAPK-dependent manner. CREB was transiently dephosphorylated after shrinkage in a manner exacerbated by p38 MAPK inhibition or MSK1 knockdown, but unaffected by inhibition of RSK. In conclusion, in ELA cells, hyperosmotic stress activates SRF in a p38 MAPK-dependent manner and transiently inactivates CREB, likely due to MSK1 inactivation. We suggest that these events contribute to shrinkage-induced changes in gene transcription and death/survival balance.


Asunto(s)
Factor de Respuesta Sérica/metabolismo , Estrés Fisiológico/fisiología , Transcripción Genética/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Presión Osmótica/fisiología , Fosforilación , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina/metabolismo
8.
Cells ; 9(2)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085585

RESUMEN

Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular/genética , Neoplasias Pancreáticas/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Invasividad Neoplásica/genética , Neoplasias Pancreáticas/patología , Inhibidores de Proteasas/farmacología , Subunidades de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores
9.
Sci Rep ; 9(1): 3352, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833639

RESUMEN

The HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3'UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222- MYB family-TIMP2 axis in regulation of motility in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación hacia Abajo/fisiología , MicroARNs/metabolismo , Isoformas de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptor ErbB-2/fisiología , Neoplasias de la Mama/patología , Movimiento Celular , Femenino , Humanos , Células MCF-7 , Isoformas de Proteínas/química , Receptor ErbB-2/química
10.
Nat Cell Biol ; 21(2): 203-213, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664786

RESUMEN

Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR-IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias/radioterapia , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/genética , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Neoplasias/genética , Neoplasias/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Proteína p53 Supresora de Tumor/genética , Pez Cebra
11.
Sci Rep ; 6: 35664, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27752128

RESUMEN

We previously reported that the human HER2 gene encodes the intronic microRNA mir-4728, which is overexpressed together with its oncogenic host gene and may act independently of the HER2 receptor. More recently, we also reported that the oncogenic miR-21-5p is regulated by 3' tailing and trimming by the non-canonical poly(A) polymerase PAPD5 and the ribonuclease PARN. Here we demonstrate a dual function for the HER2 locus in upregulation of miR-21-5p; while HER2 signalling activates transcription of mir-21, miR-4728-3p specifically stabilises miR-21-5p through inhibition of PAPD5. Our results establish a new and unexpected oncogenic role for the HER2 locus that is not currently being targeted by any anti-HER2 therapy.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , ARN Nucleotidiltransferasas/metabolismo , Receptor ErbB-2/genética , Carcinogénesis , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal , Regulación hacia Arriba
12.
Front Physiol ; 5: 130, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24795638

RESUMEN

A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells toward more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na(+)/H(+) exchanger 1 (SLC9A1, NHE1) and various H(+) ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary carcinomas, bicarbonate transporters such as the electroneutral Na(+), HCO(-) 3 cotransporter (SLC4A7, NBCn1), are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transporters in cancer. Furthermore, we present new analyses of publicly available expression data demonstrating widely altered expression levels of SLC4- and SLC26 family transporters in breast-, lung-, and colon cancer patients, and we hypothesize that bicarbonate transporter dysregulation may have both diagnostic and therapeutic potential in cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA