Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37040760

RESUMEN

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , N-Metiltransferasa de Histona-Lisina/genética , Hígado/metabolismo , Mosaicismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
2.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30293865

RESUMEN

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Asunto(s)
Adipocitos/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Ayuno/metabolismo , Transducción de Señal , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Línea Celular , Células Cultivadas , Endotelio Vascular/citología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Lipid Res ; 62: 100095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214600

RESUMEN

The pleiotropic actions of adiponectin in improving cell survival and metabolism have motivated the development of small-molecule therapeutic agents for treating diabetes and lipotoxicity. AdipoRon is a synthetic agonist of the adiponectin receptors, yet is limited by its poor solubility and bioavailability. In this work, we expand on the protective effects of AdipoRon in pancreatic ß-cells and examine how structural modifications could affect the activity, pharmacokinetics, and bioavailability of this small molecule. We describe a series of AdipoRon analogs containing amphiphilic ethylene glycol (PEG) chains. Among these, AdipoRonPEG5 induced pleiotropic effects in mice under insulinopenic and high-fat diet (HFD) conditions. While both AdipoRon and AdipoRonPEG5 substantially attenuate palmitate-induced lipotoxicity in INS-1 cells, only AdipoRonPEG5 treatment is accompanied by a significant reduction in cytotoxic ceramides. In vivo, AdipoRonPEG5 can substantially reduce pancreatic, hepatic, and serum ceramide species, with a concomitant increase in the corresponding sphingoid bases and improves insulin sensitivity of mice under HFD feeding conditions. Furthermore, hyperglycemia in streptozotocin (STZ)-induced insulinopenic adiponectin-null mice is also attenuated upon AdipoRonPEG5 treatment. Our results suggest that AdipoRonPEG5 is more effective in reducing ceramides and dihydroceramides in the liver of HFD-fed mice than AdipoRon, consistent with its potent activity in activating ceramidase in vitro in INS-1 cells. Additionally, these results indicate that the beneficial effects of AdipoRonPEG5 can be partially attributed to improved pharmacokinetics as compared with AdipoRon, thus suggesting that further derivatization may improve affinity and tissue-specific targeting.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Piperidinas/farmacología , Animales , Resistencia a la Insulina , Hígado/química , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/administración & dosificación , Piperidinas/química , Polietilenglicoles/química
4.
J Hepatol ; 75(2): 387-399, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33746082

RESUMEN

BACKGROUND & AIMS: We have previously reported that the mitochondrial dicarboxylate carrier (mDIC [SLC25A10]) is predominantly expressed in the white adipose tissue (WAT) and subject to regulation by metabolic cues. However, the specific physiological functions of mDIC and the reasons for its abundant presence in adipocytes are poorly understood. METHODS: To systemically investigate the impact of mDIC function in adipocytes in vivo, we generated loss- and gain-of-function mouse models, selectively eliminating or overexpressing mDIC in mature adipocytes, respectively. RESULTS: In in vitro differentiated white adipocytes, mDIC is responsible for succinate transport from the mitochondrial matrix to the cytosol, from where succinate can act on the succinate receptor SUCNR1 and inhibit lipolysis by dampening the cAMP- phosphorylated hormone-sensitive lipase (pHSL) pathway. We eliminated mDIC expression in adipocytes in a doxycycline (dox)-inducible manner (mDICiKO) and demonstrated that such a deletion results in enhanced adipocyte lipolysis and promotes high-fat diet (HFD)-induced adipocyte dysfunction, liver lipotoxicity, and systemic insulin resistance. Conversely, in a mouse model with dox-inducible, adipocyte-specific overexpression of mDIC (mDICiOE), we observed suppression of adipocyte lipolysis both in vivo and ex vivo. mDICiOE mice are potently protected from liver lipotoxicity upon HFD feeding. Furthermore, they show resistance to HFD-induced weight gain and adipose tissue expansion with concomitant improvements in glucose tolerance and insulin sensitivity. Beyond our data in rodents, we found that human WAT SLC25A10 mRNA levels are positively correlated with insulin sensitivity and negatively correlated with intrahepatic triglyceride levels, suggesting a critical role of mDIC in regulating overall metabolic homeostasis in humans as well. CONCLUSIONS: In summary, we highlight that mDIC plays an essential role in governing adipocyte lipolysis and preventing liver lipotoxicity in response to a HFD. LAY SUMMARY: Dysfunctional fat tissue plays an important role in the development of fatty liver disease and liver injury. Our present study identifies a mitochondrial transporter, mDIC, which tightly controls the release of free fatty acids from adipocytes to the liver through the export of succinate from mitochondria. We believe this mDIC-succinate axis could be targeted for the treatment of fatty liver disease.


Asunto(s)
Adipocitos/metabolismo , Mitocondrias Hepáticas/patología , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
5.
J Sep Sci ; 44(1): 448-463, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33085158

RESUMEN

While supercritical fluid chromatography was developed over 50 years ago, it is only over the past 15 to 20 years that it has become routinely utilized. Along with the commercialization of a new generation of instruments, during the last 20 years supercritical fluid chromatography has improved performance, reliability, and robustness. Supercritical fluid chromatography is fully compatible with mass spectrometric techniques. This review compiles the application of supercritical fluid chromatography separations coupled to mass spectrometry instrumentation for the exploration, profiling, and quantitation of metabolites during the last two decades. The selection of metabolites chosen for this article have direct applications in preclinical models of disease and clinical applications as potential biomarkers of disease including lipids, steroid hormones, bile acids, polar metabolites, peptides, and proteins.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Metabolómica , Péptidos/metabolismo , Proteínas/metabolismo , Ácidos y Sales Biliares/análisis , Cromatografía con Fluido Supercrítico , Hormonas Esteroides Gonadales/análisis , Humanos , Lípidos/análisis , Espectrometría de Masas , Péptidos/análisis , Proteínas/análisis
6.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31907197

RESUMEN

Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.


Asunto(s)
Enfermedad de Chagas/prevención & control , Vacunas Antiprotozoos/inmunología , Subgrupos de Linfocitos T/inmunología , Trypanosoma cruzi/inmunología , Animales , Enfermedad de Chagas/inmunología , Modelos Animales de Enfermedad , Inmunidad Celular , Factores Inmunológicos/metabolismo , Interferón gamma/metabolismo , Ratones , Vacunas Antiprotozoos/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
7.
J Immunol ; 198(8): 3017-3022, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275141

RESUMEN

In this study, we used cre-lox techniques to generate mice selectively deficient in ORMDL3 in airway epithelium (Ormdl3Δ2-3/Δ2-3/CC10) to simulate an inhaled therapy that effectively inhibited ORMDL3 expression in the airway. In contrast to the anticipated reduction in airway hyperresponsiveness (AHR), OVA allergen-challenged Ormdl3Δ2-3/Δ2-3/CC10 mice had a significant increase in AHR compared with wild-type mice. Levels of airway inflammation, mucus, fibrosis, and airway smooth muscle were no different in Ormdl3Δ2-3/Δ2-3/CC10 and wild-type mice. However, levels of sphingosine-1-phosphate (S1P) were significantly increased in Ormdl3Δ2-3/Δ2-3/CC10 mice as well as in airway epithelial cells in which ORMDL3 was inhibited with small interfering RNA. Incubation of S1P with airway smooth muscle cells significantly increased contractility. Overall, Ormdl3Δ2-3/Δ2-3/CC10 mice exhibit increased allergen-induced AHR independent of inflammation and associated with increased S1P generation. These studies raise concerns for inhaled therapies that selectively and effectively inhibit ORMDL3 in airway epithelium in asthma.


Asunto(s)
Asma/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Hipersensibilidad Respiratoria/metabolismo , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Lisofosfolípidos/inmunología , Lisofosfolípidos/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Hipersensibilidad Respiratoria/inmunología , Esfingosina/análogos & derivados , Esfingosina/inmunología , Esfingosina/metabolismo
8.
Diabetologia ; 61(4): 932-941, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29224189

RESUMEN

AIM/HYPOTHESIS: Adiponectin (APN), a circulating hormone secreted by mature adipocytes, has been extensively studied because it has beneficial metabolic effects. While many studies have focused on the congenital loss of APN and its effects on systemic body glucose and lipid metabolism, little is known about the effects triggered by acute loss of APN in the adult mouse. We anticipated that genetically induced acute depletion of APN in adult mice would have a more profound effect on systemic metabolic health than congenital deletion of Adipoq, the gene encoding APN, with its associated potential for adaptive responses that may mask the phenotypes. METHODS: Mice carrying loxP-flanked regions of Adipoq were generated and bred to the Adipoq (APN) promoter-driven reverse tetracycline-controlled transactivator (rtTA) (APN-rtTA) gene and a tet-responsive Cre line (TRE-Cre) to achieve acute depletion of APN. Upon acute removal of APN in adult mice, systemic glucose and lipid homeostasis were assessed under basal and insulinopenic conditions. RESULTS: The acute depletion of APN results in more severe systemic insulin resistance and hyperlipidaemia than in mice with congenital loss of APN. Furthermore, the acute depletion of APN in adult mice results in a much more dramatic reduction in survival rate, with 50% of inducible knockouts dying in the first 5 days under insulinopenic conditions compared with 0% of congenital Adipoq knockout mice under similar conditions. CONCLUSIONS/INTERPRETATION: Acute systemic removal of APN results in a much more negative metabolic phenotype compared with congenital knockout of Adipoq. Specifically, our data demonstrate that acute depletion of APN is especially detrimental to lipid homeostasis, both under basal and insulinopenic conditions. This suggests that compensatory mechanisms exist in congenital knockout mice that offset some of the metabolic actions covered by APN.


Asunto(s)
Adiponectina/deficiencia , Tejido Adiposo/fisiopatología , Adipocitos/metabolismo , Adiponectina/genética , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Homeostasis , Hiperlipidemias/fisiopatología , Inflamación , Insulina/metabolismo , Resistencia a la Insulina , Lipasa/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Fenotipo , Pioglitazona/química , Regiones Promotoras Genéticas , Factores de Tiempo
9.
Diabetes Metab Res Rev ; 31(7): 734-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25959529

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) appears closely linked with ceramide accumulation, inducing insulin resistance and toxicity to multiple cell types. Animal studies demonstrate that thiazolidinediones (TZDs) reduce ceramide concentrations in plasma and skeletal muscle and support lowering of ceramide levels as a potential mediator of TZDs' mechanism of action in reducing insulin resistance; however, studies in humans have yet to be reported. This study investigated the effects of pioglitazone therapy on plasma ceramides to understand the mechanism by which TZDs improve insulin resistance in MetS. METHODS: Thirty-seven subjects with MetS were studied in a single-centre, randomized, double-blind, placebo-controlled trial comparing pioglitazone to placebo. Data were collected at baseline and after 6 months of therapy. The primary endpoint was the change from baseline in plasma ceramide concentrations. RESULTS: Treatment with pioglitazone for 6 months, compared with placebo, significantly reduced multiple plasma ceramide concentrations: C18:0 (p = 0.001), C20:0 (p = 0.0004), C24 : 1 (p = 0.009), dihydroceramide C18 :0 (p = 0.005), dihydroceramide C24:1 (p = 0.004), lactosylceramide C16:0 (p = 0.02) and the hexosylceramides C16:0 (p = 0.0003), C18 : 0 (p = 0.00001), C22:0 (p = 0.00002) and C24:1 (p = 0.0006). Additionally, significant reductions were found when ceramides were grouped by species: ceramides (p = 0.03), dihydroceramides (p = 0.02), hexosylceramides (p = 0.00001) and lactosylceramides (p = 0.02). The total of all measured ceramides was also significantly reduced (p = 0.001). Following treatment with pioglitazone, the decrease in some ceramide species correlated negatively with the change in insulin sensitivity (dihydroceramide C16:0, r = -0.54; p = 0.02) and positively with total (lactosylceramide C24:0, r = 0.53; p = 0.02) and high molecular weight (lactosylceramide C24:0, r = 0.48; p = 0.05) adiponectin measurements; however, significant associations with changes in liver fat and glycemic control reduction were not found. CONCLUSIONS: Pioglitazone in individuals with MetS induces a potent decrease in plasma ceramides, and some of the changes correlate with changes in insulin resistance and adiponectin levels.


Asunto(s)
Ceramidas/sangre , Hipoglucemiantes/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Adiponectina/sangre , Adulto , Método Doble Ciego , Femenino , Humanos , Resistencia a la Insulina , Lactosilceramidos/sangre , Masculino , Síndrome Metabólico/sangre , Persona de Mediana Edad , Pioglitazona
10.
Pediatr Nephrol ; 29(3): 415-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389650

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is associated with increased incidence of cardiac dysfunction. Recent animal studies have demonstrated that elevated levels of ceramides cause dilated lipotoxic cardiomyopathy. We hypothesized ceramides are increased in children with CKD and associated with abnormal cardiac structure and function. METHODS: Ceramide levels were determined in 93 children aged 1-16 years enrolled in the Chronic Kidney Disease in Children (CKiD) study and compared to levels from 24 healthy controls. Complete demographic, clinical, and laboratory information, and ceramide measurements were analyzed cross-sectionally. Echocardiography was performed to determine cardiac structure and function. RESULTS: Very long-chain C24:0 ceramides were the most abundant species in both control (56 %) and CKD subjects (55 %), followed by C24:1 (controls 19 %, CKD 23 %) and C22:0 (controls 19 %, CKD 13 %). Total serum ceramide levels were significantly higher in CKD children versus controls (p < 0.001). Ceramide metabolites lactosylceramide, C24:0L, and C16:0L were significantly higher in CKD subjects than controls (p < 0.001). The proportion of C24:0L was dramatically higher in CKD (59 %) versus control (17 %) subjects (p < 0.001). In adjusted multivariate analyses, higher log10C24:0L and log10C16:0L were significant predictors of lower shortening fraction and mid-wall shortening. CONCLUSIONS: Ceramide levels are increased in children with CKD. Our study identified lactosylceramides as an independent predictor of lower systolic function in these children.


Asunto(s)
Ceramidas/sangre , Hipertrofia Ventricular Izquierda/etiología , Contracción Miocárdica , Insuficiencia Renal Crónica/complicaciones , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Ecocardiografía Doppler , Femenino , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/fisiopatología , Lactante , Lactosilceramidos/sangre , Modelos Lineales , Masculino , Análisis Multivariante , América del Norte , Proyectos Piloto , Estudios Prospectivos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Factores de Riesgo , Regulación hacia Arriba , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología
11.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237602

RESUMEN

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Asunto(s)
Receptores de Glucagón , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Receptores de Glucagón/metabolismo , Regulación hacia Abajo , Ratones Noqueados , Riñón/metabolismo , Homeostasis/fisiología , Lípidos
12.
Nat Metab ; 6(7): 1347-1366, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961186

RESUMEN

PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.


Asunto(s)
Adipocitos , Ceramidas , Ceramidas/metabolismo , Adipocitos/metabolismo , Animales , Ratones , Adipogénesis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Humanos
14.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589563

RESUMEN

Intestinal immunity is dependent on barrier function to maintain quiescence. The mechanisms for the maintenance of this barrier are not fully understood. Delta 4-desaturase, sphingolipid 2 (DEGS2) is a lipid desaturase and hydroxylase that catalyzes the synthesis of ceramide and phytoceramide from dihydroceramide. Using a forward genetic approach, we found and validated a mutation in Degs2 as causative of increasing susceptibility to colitis and altering the phytoceramide balance in the colon. DEGS2 is expressed in the intestinal epithelium, and the colitis phenotype is dependent on the non-hematopoietic compartment of the mouse. In the absence of DEGS2, the colon lacks phytoceramides and accumulates large amounts of the precursor lipid dihydroceramide. In response to dextran sodium sulfate (DSS)-induced colitis, colonic epithelial cells in DEGS2-deficient mice had increased cell death and decreased proliferation compared to those in wild-type mice. These findings demonstrate that DEGS2 is needed to maintain epithelial integrity, protect against DSS-induced colitis and maintain lipid balance in vivo.


Asunto(s)
Colitis , Animales , Ratones , Ceramidas , Oxigenasas de Función Mixta , Inflamación , Ácido Graso Desaturasas
15.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993727

RESUMEN

Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights: Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.

16.
Mol Metab ; 78: 101821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806486

RESUMEN

The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and ß cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of ß cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic ß cell-specific PPARα (ß-PPARα) and HNF4α (ß-HNF4α) overexpression mice. ß-PPARα mice exhibited improved protection from lipotoxicity, but elevated ß-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. ß-HNF4α mice showed a more severe phenotype when compared to ß-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of ß-PPARα and ß-HNF4α. Given that ß-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
17.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
18.
Sci Rep ; 12(1): 9960, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705631

RESUMEN

Metabolic syndrome increases risk of complicating co-morbidities. Current clinical indicators reflect established metabolic impairment, preventing earlier intervention strategies. Here we show that circulating sphingolipids are altered in the very early stages of insulin resistance development. The study involved 16 paired overweight but healthy monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years. Importantly, animals did not differ in adiposity and were euglycemic throughout the study period. Using mass spectrometry, circulating sphingolipids, including ceramides and sphingomyelins, were detected and quantified for healthy and impaired animals at both time points. At time of diagnosis, several ceramides were significantly different between healthy and impaired animals. Correlation analysis revealed differences in the interactions among ceramides in impaired animals at diagnosis and pre-diagnosis when animals were clinically indistinguishable from controls. Furthermore, correlations between ceramides and early-stage markers of insulin resistance, diacylglycerols and non-esterified fatty acids, were distinct for healthy and impaired states. Regression analysis identifies coordinated changes in lipid handling across lipid classes as animals progress from healthy to insulin resistant. Correlations between ceramides and the adipose-derived adipokine adiponectin were apparent in healthy animals but not in the metabolically impaired animals, even in advance of loss in insulin sensitivity. These data suggest that circulating ceramides are clinically relevant in identifying disease risk independent of differences in adiposity, and may be important in devising preventative strategies.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Animales , Ceramidas , Macaca mulatta , Síndrome Metabólico/etiología , Obesidad/metabolismo , Esfingolípidos
19.
Nat Metab ; 4(11): 1474-1494, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36329217

RESUMEN

Iron is essential to many fundamental biological processes, but its cellular compartmentalization and concentration must be tightly controlled. Although iron overload can contribute to obesity-associated metabolic deterioration, the subcellular localization and accumulation of iron in adipose tissue macrophages is largely unknown. Here, we show that macrophage mitochondrial iron levels control systemic metabolism in male mice by altering adipocyte iron concentrations. Using various transgenic mouse models to manipulate the macrophage mitochondrial matrix iron content in an inducible fashion, we demonstrate that lowering macrophage mitochondrial matrix iron increases numbers of M2-like macrophages in adipose tissue, lowers iron levels in adipocytes, attenuates inflammation and protects from high-fat-diet-induced metabolic deterioration. Conversely, elevating macrophage mitochondrial matrix iron increases M1-like macrophages and iron levels in adipocytes, exacerbates inflammation and worsens high-fat-diet-induced metabolic dysfunction. These phenotypes are robustly reproduced by transplantation of a small amount of fat from transgenic to wild-type mice. Taken together, we identify macrophage mitochondrial iron levels as a crucial determinant of systemic metabolic homeostasis in mice.


Asunto(s)
Tejido Adiposo , Hierro , Masculino , Ratones , Animales , Hierro/metabolismo , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Adipocitos/metabolismo , Inflamación/metabolismo
20.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880782

RESUMEN

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Asunto(s)
Caveolina 1 , Vesículas Extracelulares , Insulina , Animales , Ratones , Adipocitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA