Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Life Sci Alliance ; 4(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33376129

RESUMEN

The pryin domain (PYD) domain is involved in protein interactions that lead to assembly of immune-sensing complexes such as inflammasomes. The repertoire of PYD-containing genes expressed by a cell type arms tissues with responses against a range of stimuli. The transcriptional regulation of the PYD gene family however is incompletely understood. Alternative promoter utilization was identified as a mechanism regulating the tissue distribution of human PYD gene family members, including NLRP6 that is translationally silenced outside of intestinal tissue. Results show that alternative transcriptional promoters mediate NLRP6 silencing in mice and humans, despite no upstream genomic synteny. Human NLRP6 contains an internal alternative promoter within exon 2 of the PYD, resulting in a truncated mRNA in nonintestinal tissue. In mice, a proximal promoter was used that expanded the 5' leader sequence restricting nuclear export and abolishing translational efficiency. Nlrp6 was dispensable in disease models targeting the kidney, which expresses noncanonical isoforms. Thus, alternative promoter use is a critical mechanism not just for isoform modulation but for determining expression profile and function of PYD family members.


Asunto(s)
Empalme Alternativo/genética , Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Corteza Renal/metabolismo , Regiones Promotoras Genéticas/genética , Dominio Pirina/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Animales , Células Cultivadas , Exones , Expresión Génica , Regulación de la Expresión Génica , Genes Reguladores , Humanos , Inflamasomas/metabolismo , Mucosa Intestinal/patología , Corteza Renal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo
2.
BMC Bioinformatics ; 9: 450, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18940007

RESUMEN

BACKGROUND: The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses. RESULTS: Bluejay 1.0 is a genome viewer integrating genome annotation with: (i) gene expression information; and (ii) comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i) numerous display customization features; (ii) the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii) the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding. CONCLUSION: Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma , Alineación de Secuencia/métodos , Animales , Humanos
3.
J Biomed Semantics ; 4(1): 6, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23398680

RESUMEN

BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

4.
J Biomed Semantics ; 2: 4, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21806842

RESUMEN

BACKGROUND: The interaction between biological researchers and the bioinformatics tools they use is still hampered by incomplete interoperability between such tools. To ensure interoperability initiatives are effectively deployed, end-user applications need to be aware of, and support, best practices and standards. Here, we report on an initiative in which software developers and genome biologists came together to explore and raise awareness of these issues: BioHackathon 2009. RESULTS: Developers in attendance came from diverse backgrounds, with experts in Web services, workflow tools, text mining and visualization. Genome biologists provided expertise and exemplar data from the domains of sequence and pathway analysis and glyco-informatics. One goal of the meeting was to evaluate the ability to address real world use cases in these domains using the tools that the developers represented. This resulted in i) a workflow to annotate 100,000 sequences from an invertebrate species; ii) an integrated system for analysis of the transcription factor binding sites (TFBSs) enriched based on differential gene expression data obtained from a microarray experiment; iii) a workflow to enumerate putative physical protein interactions among enzymes in a metabolic pathway using protein structure data; iv) a workflow to analyze glyco-gene-related diseases by searching for human homologs of glyco-genes in other species, such as fruit flies, and retrieving their phenotype-annotated SNPs. CONCLUSIONS: Beyond deriving prototype solutions for each use-case, a second major purpose of the BioHackathon was to highlight areas of insufficiency. We discuss the issues raised by our exploration of the problem/solution space, concluding that there are still problems with the way Web services are modeled and annotated, including: i) the absence of several useful data or analysis functions in the Web service "space"; ii) the lack of documentation of methods; iii) lack of compliance with the SOAP/WSDL specification among and between various programming-language libraries; and iv) incompatibility between various bioinformatics data formats. Although it was still difficult to solve real world problems posed to the developers by the biological researchers in attendance because of these problems, we note the promise of addressing these issues within a semantic framework.

5.
J Biomed Semantics ; 1(1): 8, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20727200

RESUMEN

Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.

6.
Int J Nanomedicine ; 4: 79-89, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19421373

RESUMEN

We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Modelos Anatómicos , Modelos Biológicos , Farmacocinética , Proteoma/metabolismo , Interfaz Usuario-Computador , Humanos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA