Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782123

RESUMEN

Limited water availability, population growth, and climate change have resulted in freshwater crises in many countries. Jordan's situation is emblematic, compounded by conflict-induced population shocks. Integrating knowledge across hydrology, climatology, agriculture, political science, geography, and economics, we present the Jordan Water Model, a nationwide coupled human-natural-engineered systems model that is used to evaluate Jordan's freshwater security under climate and socioeconomic changes. The complex systems model simulates the trajectory of Jordan's water system, representing dynamic interactions between a hierarchy of actors and the natural and engineered water environment. A multiagent modeling approach enables the quantification of impacts at the level of thousands of representative agents across sectors, allowing for the evaluation of both systemwide and distributional outcomes translated into a suite of water-security metrics (vulnerability, equity, shortage duration, and economic well-being). Model results indicate severe, potentially destabilizing, declines in freshwater security. Per capita water availability decreases by approximately 50% by the end of the century. Without intervening measures, >90% of the low-income household population experiences critical insecurity by the end of the century, receiving <40 L per capita per day. Widening disparity in freshwater use, lengthening shortage durations, and declining economic welfare are prevalent across narratives. To gain a foothold on its freshwater future, Jordan must enact a sweeping portfolio of ambitious interventions that include large-scale desalinization and comprehensive water sector reform, with model results revealing exponential improvements in water security through the coordination of supply- and demand-side measures.


Asunto(s)
Cambio Climático , Conservación de los Recursos Hídricos/tendencias , Dinámica Poblacional/tendencias , Agua Dulce , Jordania , Análisis de Sistemas
2.
Environ Sci Technol ; 54(14): 8728-8738, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32516527

RESUMEN

Managed aquifer recharge (MAR) enhances freshwater security and augments local groundwater supplies. However, geochemical and hydrological shifts during MAR can release toxic, geogenic contaminants from sediments to groundwater, threatening the viability of MAR as a water management strategy. Using reactive transport modeling coupled with aquifer analyses and measured water chemistry, we investigate the causal mechanisms of arsenic release during MAR via injection in the Orange County Groundwater Basin. Here, injection water is oxygenated, highly purified recycled water produced by advanced water treatment. Injection occurs via a well screened at several depth intervals ranging from 160-365 m, allowing recharge into multiple confined horizons (zones) of the aquifer system. However, these zones are characterized by varying degrees of prior oxidation due to historic, long-term infiltration from the overlying aquifer. The resulting sediment geochemical heterogeneity provides a critical control on the release (or retention) of arsenic. In zones with prior oxidation, As mobilization occurs via arsenate desorption from Fe-(hydr)oxides, primarily associated with shifts in pH; within zones that remain reduced prior to injection, As release is attributed to the oxidative dissolution of As-bearing pyrite. We find that As release can be attributed to various geochemical mechanisms within a single injection well owing to geochemical heterogeneity across the aquifer system.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
3.
Proc Natl Acad Sci U S A ; 113(52): 14932-14937, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27930317

RESUMEN

Since 2013, hundreds of thousands of refugees have migrated southward to Jordan to escape the Syrian civil war that began in mid-2011. Evaluating impacts of conflict and migration on land use and transboundary water resources in an active war zone remains a challenge. However, spatial and statistical analyses of satellite imagery for the recent period of Syrian refugee mass migration provide evidence of rapid changes in land use, water use, and water management in the Yarmouk-Jordan river watershed shared by Syria, Jordan, and Israel. Conflict and consequent migration caused ∼50% decreases in both irrigated agriculture in Syria and retention of winter rainfall in Syrian dams, which gave rise to unexpected additional stream flow to downstream Jordan during the refugee migration period. Comparing premigration and postmigration periods, Syrian abandonment of irrigated agriculture accounts for half of the stream flow increase, with the other half attributable to recovery from a severe drought. Despite this increase, the Yarmouk River flow into Jordan is still substantially below the volume that was expected by Jordan under the 1953, 1987, and 2001 bilateral agreements with Syria.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Imágenes Satelitales/métodos , Conservación de los Recursos Naturales/métodos , Violencia Étnica , Agua Dulce , Recursos en Salud , Israel , Jordania , Refugiados , Siria
4.
Proc Natl Acad Sci U S A ; 110(34): 13751-6, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918360

RESUMEN

Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Fenómenos Geológicos , Agua Subterránea/química , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Mapeo Geográfico , Ríos , Vietnam , Abastecimiento de Agua
5.
Proc Natl Acad Sci U S A ; 109(26): 10164-8, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22711814

RESUMEN

Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO(2) emissions associated with coal-based electrical power generation and other industrial sources of CO(2) [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO(2) into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO(2) repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions.

6.
Environ Sci Technol ; 48(11): 6081-8, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24849074

RESUMEN

Groundwater exploitation is rising in the Mekong Delta, Vietnam, potentially exacerbating arsenic contamination from natural sources. We investigate trends and controls on contamination patterns throughout the Delta's multi-aquifer system as observed in a spatially exhaustive data set of arsenic measured in >40,000 wells, 10.5% of which exceed the WHO drinking water standard for arsenic (10 µg/L). We relate strong trends in the distribution of contamination among well samples to explanatory variables derived from 3D ancillary physicochemical data sets using logistic regression models. Parsimonious models describe much of the observed variability in arsenic occurrence, which differs considerably between subsets of wells tapping shallow versus deeper aquifer groups. In the shallowest Holocene-Pleistocene aquifers, arsenic occurrence is best described by distance to the Mekong river channels and delta front, depth, and location within fault-bounded zones of the region. The same model, however, fails to explain observations in the deeper group of Pliocene-Miocene aquifers. Among these deeper units, arsenic occurrence is rare except among older wells in near-river, heavily pumped areas. Our analysis is the first to examine both natural and anthropogenically mediated contributions to the distribution of arsenic throughout the Mekong Delta's multi-aquifer system, with implications for management of similarly affected basins throughout Southeast Asia.


Asunto(s)
Arsénico/análisis , Agua Subterránea/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Vietnam
7.
Environ Sci Technol ; 48(12): 6795-804, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24828335

RESUMEN

The San Francisco Estuary, California, contains mercury (Hg) contamination originating from historical regional gold and Hg mining operations. We measured hydrological and geochemical variables in a tidal marsh of the Palo Alto Baylands Nature Preserve to determine the sources, location, and magnitude of hydrological fluxes of methylmercury (MeHg), a bioavailable Hg species of ecological and health concern. Based on measured concentrations and detailed finite-element simulation of coupled surface water and saturated-unsaturated groundwater flow, we found pore water MeHg was concentrated in unsaturated pockets that persisted over tidal cycles. These pockets, occurring over 16% of the marsh plain area, corresponded to the marsh root zone. Groundwater discharge (e.g., exfiltration) to the tidal channel represented a significant source of MeHg during low tide. We found that nonchannelized flow accounted for up to 20% of the MeHg flux to the estuary. The estimated net flux of filter-passing (0.45 µm) MeHg toward estuary was 10 ± 5 ng m(-2) day(-1) during a single 12-h tidal cycle, suggesting an annual MeHg load of 1.17 ± 0.58 kg when the estimated flux was applied to present tidal marshes and planned marsh restorations throughout the San Francisco Estuary.


Asunto(s)
Monitoreo del Ambiente , Hidrología , Compuestos de Metilmercurio/análisis , Movimientos del Agua , Humedales , California , Estuarios , Agua Subterránea/química , Mercurio/análisis , Minería , Plantas/metabolismo , Porosidad , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 47(14): 8031-41, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23697883

RESUMEN

Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.


Asunto(s)
Combustibles Fósiles/estadística & datos numéricos , Internacionalidad
10.
Commun Biol ; 4(1): 750, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168255

RESUMEN

Wetlands worldwide are under threat from anthropogenic impacts. In large protected North American areas such as Yellowstone and Wood Buffalo National Parks, aquatic habitats are disappearing and wetland-dependent fauna are in decline1-3. Here we investigate population dynamics of an indicator species in Canada's Peace-Athabasca Delta ("the delta"), a World Heritage Site. Based on population surveys, habitat mapping and genetic data from 288 muskrats, we use agent-based modeling and genetic analyses to explain population expansion and decline of the semi-aquatic muskrat (Ondatra zibethicus). Simulations quantify a large population (~500,000 individuals) following flood-induced habitat gains, with decreased size (~10,000 individuals) during drying. Genetic analyses show extremely low long-term effective population size (Ne: 60-127), supporting a legacy of population bottlenecks. Our simulations indicate that the muskrat population in the delta is a metapopulation with individuals migrating preferentially along riparian pathways. Related individuals found over 40 km apart imply dispersal distances far greater than their typical home range (130 m). Rapid metapopulation recovery is achieved via riparian corridor migration and passive flood-transport of individuals. Source-sink dynamics show wetland loss impacts on the muskrat metapopulation's spatial extent. Dramatic landscape change is underway, devastating local fauna, including this generalist species even in a protected ecosystem.


Asunto(s)
Arvicolinae/genética , Repeticiones de Microsatélite/genética , Humedales , Animales , Canadá , Cambio Climático , Geografía , Modelos Teóricos , Densidad de Población , Dinámica Poblacional
11.
Vaccine ; 38 Suppl 1: A110-A117, 2020 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-31383486

RESUMEN

Cholera has been eliminated as a public health problem in high-income countries that have implemented sanitation system separating the community's fecal waste from their drinking water and food supply. These expensive, highly-engineered systems, first developed in London over 150 years ago, have not reached low-income high-risk communities across Asia. Barriers to their implementation in communities at highest risk for cholera include the high capital and operating costs for this technological approach, limited capacity and perverse incentives of local governments, and a decreasing availability of water. Interim solutions including household level water treatment, constructing latrines and handwashing promotion have only marginally reduced the risk of cholera and other fecally transmitted diseases. Increased research to develop and policy flexibility to implement a new generation of solutions that are designed specifically to address the physical, financial and political constraints of low-income communities offers the best prospect for reducing the burden of cholera across Asia.


Asunto(s)
Cólera , Control de Enfermedades Transmisibles/métodos , Desinfección de las Manos , Saneamiento , Asia/epidemiología , Cólera/epidemiología , Cólera/prevención & control , Humanos , Agua
12.
Sci Adv ; 3(8): e1700581, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28875164

RESUMEN

In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 2): 026305, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16605452

RESUMEN

We study the effective permeability of two-dimensional binary systems characterized by a network of branching channels embedded in a uniform matrix material. Channels are assigned a higher permeability than the surrounding matrix and, therefore, serve as preferential pathways for fluid migration. The channel networks are constructed using a nonlooping invasion percolation model. We perform extensive numerical flow simulations to determine the effective permeability tensor of channel-matrix systems with broadly varying network properties. These computed effective permeabilities are then used to systematically investigate the factors that control the permeability upscaling process. The upscaling framework adopted for this study is based on spatial power averaging. We determine the scaling behavior of the averaging exponent omega by analyzing its dependence on three characteristic properties of the channel-matrix system: (i) the channel-matrix permeability contrast; (ii) the fractal dimension of the channel network, df; and (iii) the average tortuosity of spanning paths on the network backbone, tau. The behavior of and the corresponding component of effective permeability in each principal direction (parallel and perpendicular to the network-spanning direction) are compared. The permeability anisotropy ratio is shown to be a clear function of key system properties.

14.
Ground Water ; 41(2): 142-55, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12656281

RESUMEN

Several recent studies at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, have indicated that the relative preferential flowpaths and flow barriers resulting from decimeter-scale aquifer heterogeneities appear to have a dominant effect on plume-scale solute transport. Numerical experiments are thus conducted in this study to explore the key characteristics of solute transport in two-dimensional flow fields influenced by decimeter-scale preferential flowpaths. A hypothetical but geologically plausible network of 10 cm wide channels of high hydraulic conductivity is used to represent the relative preferential flowpaths embedded in an otherwise homogeneous aquifer. When the hydraulic conductivity in the channels is 100 times greater than that in the remaining portion of the aquifer, the calculated concentration distributions under three source configurations all exhibit highly asymmetrical, non-Gaussian patterns. These patterns, with peak concentrations close to the source and extensive spreading downgradient, resemble that observed at the MADE site tracer tests. When the contrast between the channel and nonchannel hydraulic conductivities is reduced to 30:1 from 100:1, the calculated mass distribution curve starts to approach a Gaussian one with the peak concentration near the central portion of the plume. Additional analysis based on a field-scale model demonstrates that the existence of decimeter-scale preferential flowpaths can have potentially far-reaching implications for ground water remediation. Failure to account for them in numerical simulation could lead to overestimation of the effectiveness of the remedial measure under consideration.


Asunto(s)
Modelos Teóricos , Movimientos del Agua , Abastecimiento de Agua , Reproducibilidad de los Resultados
16.
Ground Water ; 49(5): 649-62, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20860688

RESUMEN

Field studies at well-instrumented research sites have provided extensive data sets and important insights essential for development and testing of transport theories and mathematical models. This paper provides an overview of over 25 years of research and lessons learned at one of such field research sites on the Columbus Air Force Base in Mississippi, commonly known as the Macrodispersion Experiment (MADE) site. Since the mid-1980s, field data from the MADE site have been used extensively by researchers around the world to explore complex contaminant transport phenomena in highly heterogeneous porous media. Results from field investigations and modeling analyses suggested that connected networks of small-scale preferential flow paths and relative flow barriers exert dominant control on solute transport processes. The classical advection-dispersion model was shown to inadequately represent plume-scale transport, while the dual-domain mass transfer model was found to reproduce the primary observed plume characteristics. The MADE site has served as a valuable natural observatory for contaminant transport studies where new observations have led to better understanding and improved models have sprung out analysis of new data.


Asunto(s)
Modelos Teóricos , Contaminantes del Agua/química , Mississippi
17.
Ground Water ; 49(4): 503-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20807245

RESUMEN

A new tracer experiment (referred to as MADE-5) was conducted at the well-known Macrodispersion Experiment (MADE) site to investigate the influence of small-scale mass-transfer and dispersion processes on well-to-well transport. The test was performed under dipole forced-gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late-time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field-experimental data were also used to evaluate two transport models: a stochastic advection-dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual-domain single-rate (DDSR) mass-transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high-resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.


Asunto(s)
Ciencias de la Tierra/métodos , Modelos Teóricos , Movimientos del Agua , Ciclo Hidrológico
18.
Environ Sci Technol ; 42(3): 671-6, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18323086

RESUMEN

Spatially and temporally continuous temperature measurements were collected over 32 h using a fiber-optic distributed temperature sensing (DTS) system deployed along 330 m of two intertidal saltmarsh channel beds in northern California. Measured temperature gradients imparted ecosystem-scale structure to the saltmarsh tidal channel thermal regime, which was punctuated by potential warm and cold refugia. Anomalous bed temperatures of 2-4 degrees C occurred throughout the 1.3 tidal cycles at some locations. Discrete locations of consistently warm temperatures characterized sustained seepage of recently infiltrated tidal waters. Low-variance temperature anomalies were typically collocated with hidden microtopographic tributaries that facilitated mixing of warm surface waters and cold groundwater. Bed temperature gradients (approximately 2 degrees C/100 m, average) decreased from high temperatures similar to bay water at the channel mouths to low inland temperatures comparable to groundwater. The trends were maintained by cold groundwater discharge throughout the channels, which affected bed temperatures in proportion to channel reach exposure time; the opposing effect, conductive bed-warming by tidal waters, was proportional to flood duration. DTS is a promising tool for identifying spatial and temporal temperature patterns of hydroecological importance amidst complex natural systems.


Asunto(s)
Temperatura , Humedales , Ambiente , Geografía , San Francisco , Luz Solar , Movimientos del Agua
19.
Environ Sci Technol ; 40(10): 3336-41, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16749702

RESUMEN

The interaction between surface and subsurface waters through hyporheic exchange and baseflow is critical to maintaining ecological health in streams. During warm periods, groundwater-surface water interactions have two primary effects on stream temperature: (1) cool groundwater discharging as baseflow lowers stream temperature and (2) hyporheic exchange buffers diurnal stream temperature variations. We demonstrate, for the first time, how high-resolution, remotely sensed forward-looking infrared (FLIR) images and instream temperature data can be used to quantify detailed spatial patterns of groundwater discharge to a 1.7 km reach of Cottonwood Creek in Plumas National Forest, CA. We quantifythe individual effects of baseflow and hyporheic exchange on stream temperatures by simulating the stream energy budget under different conceptual models of the stream-aquifer interaction. Observed spatial and temporal patterns of stream temperature are consistent with an increase in baseflow and hyporheic exchange within the middle, restored stream reach when compared to groundwater fluxes in the surrounding, unrestored reaches. One implication is that pond and plug stream restoration may improve the aquatic habitat by depressing maximum stream temperatures by > 3 degrees C (K).


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos/química , Contaminantes del Agua/análisis , Abastecimiento de Agua , Temperatura , Termografía , Factores de Tiempo
20.
Arch Pathol Lab Med ; 129(4): e87-90, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15794696

RESUMEN

We report a case of a 39-year-old West African man with unknown human immunodeficiency virus status diagnosed with gastric toxoplasmosis as the presenting manifestation of acquired immunodeficiency syndrome. Toxoplasma gondii is common in severely immunosuppressed patients and most frequently involves the central nervous system, followed by the eye, myocardium and skeletal muscle, lungs, bone marrow, and peripheral blood. For unclear reasons, gastrointestinal involvement is exceedingly rare and occurs in the context of severe immunosuppression and disseminated disease. To our knowledge, this is the first report in the English literature of a patient with isolated, manifest gastric toxoplasmosis without evidence of concomitant cerebral or extracerebral involvement. It is important for both the clinician and the pathologist to maintain a high index of suspicion for toxoplasmosis in immunosuppressed patients presenting with nonspecific symptoms of gastritis and radiologic and endoscopic presence of thickened gastric folds with or without ulceration.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/parasitología , Síndrome de Inmunodeficiencia Adquirida/diagnóstico , Gastritis/patología , Gastritis/parasitología , Toxoplasmosis/patología , Infecciones Oportunistas Relacionadas con el SIDA/diagnóstico , Adulto , Humanos , Masculino , Toxoplasmosis/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA