RESUMEN
Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson's disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.
Asunto(s)
Ácido Aspártico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biosíntesis , Transporte Biológico Activo , Clonación Molecular , Citosol/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , beta-Alanina/biosíntesisRESUMEN
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Asunto(s)
Antioxidantes , Enfermedades Mitocondriales , Medicina de Precisión , Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , ADN Mitocondrial/genética , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Proteínas Mitocondriales/metabolismoRESUMEN
Mitochondrial diseases are a plethora of inherited neuromuscular disorders sharing defects in mitochondrial respiration, but largely different from one another for genetic basis and pathogenic mechanism. Whole exome sequencing was performed in a familiar trio (trio-WES) with a child affected by severe epileptic encephalopathy associated with respiratory complex I deficiency and mitochondrial DNA depletion in skeletal muscle. By trio-WES we identified biallelic mutations in SLC25A10, a nuclear gene encoding a member of the mitochondrial carrier family. Genetic and functional analyses conducted on patient fibroblasts showed that SLC25A10 mutations are associated with reduction in RNA quantity and aberrant RNA splicing, and to absence of SLC25A10 protein and its transporting function. The yeast SLC25A10 ortholog knockout strain showed defects in mitochondrial respiration and mitochondrial DNA content, similarly to what observed in the patient skeletal muscle, and growth susceptibility to oxidative stress. Albeit patient fibroblasts were depleted in the main antioxidant molecules NADPH and glutathione, transport assays demonstrated that SLC25A10 is unable to transport glutathione. Here, we report the first recessive mutations of SLC25A10 associated to an inherited severe mitochondrial neurodegenerative disorder. We propose that SLC25A10 loss-of-function causes pathological disarrangements in respiratory-demanding conditions and oxidative stress vulnerability.
Asunto(s)
Encefalopatías/genética , Encefalopatías/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación/genética , Antioxidantes/metabolismo , Niño , ADN Mitocondrial/genética , Heterocigoto , Humanos , Masculino , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo/genética , Linaje , Empalme del ARN/genéticaRESUMEN
Barth syndrome (BTHS), an X-linked disease associated with cardioskeletal myopathy, neutropenia, and organic aciduria, is characterized by abnormalities of card-iolipin (CL) species in mitochondria. Diagnosis of the disease is often compromised by lack of rapid and widely available diagnostic laboratory tests. The present study describes a new method for BTHS screening based on MALDI-TOF/MS analysis of leukocyte lipids. This generates a "CL fingerprint" and allows quick and simple assay of the relative levels of CL and monolysocardiolipin species in leukocyte total lipid profiles. To validate the method, we used vector algebra to analyze the difference in lipid composition between controls (24 healthy donors) and patients (8 boys affected by BTHS) in the high-mass phospholipid range. The method of lipid analysis described represents an important additional tool for the diagnosis of BTHS and potentially enables therapeutic monitoring of drug targets, which have been shown to ameliorate abnormal CL profiles in cells.
Asunto(s)
Síndrome de Barth/sangre , Cardiolipinas/genética , Cardiomiopatías/sangre , Lisofosfolípidos/metabolismo , Adulto , Síndrome de Barth/genética , Cardiolipinas/biosíntesis , Cardiomiopatías/genética , Cardiomiopatías/patología , Dermatoglifia del ADN , Voluntarios Sanos , Humanos , Leucocitos/metabolismo , Masculino , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fosfolípidos/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Background and aims: Aberrations in the immunoglobulin heavy chain (IgH) locus are associated with poor prognosis in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) patients. The primary objective of this pilot study is to enhance our understanding of the IgH phenotype by exploring the intracellular chiral metabolome. Materials and methods: Leukemia cells were isolated from the bone marrow of BCP-ALL pediatric patients at diagnosis. The samples' metabolome and transcriptome were characterized using untargeted chiral metabolomic and next-generation sequencing transcriptomic analyses. Results: For the first time D- amino acids were identified in the leukemic cells' intracellular metabolome from the bone marrow niche. Chiral metabolic signatures at diagnosis was indicative of a resistant phenotype. Through integrated network analysis and Pearson correlation, confirmation was obtained regarding the association of the IgH phenotype with several genes linked to poor prognosis. Conclusion: The findings of this study have contributed to the understanding that the chiral metabolome plays a role in the poor prognosis observed in an exceptionally rare patient cohort. The findings include elevated D-amino acid incorporation in the IgH group, the emergence of several unknown, potentially enantiomeric, metabolites, and insights into metabolic pathways that all warrant further exploration.
RESUMEN
É£-aminobutyric acid (GABA) is a fourcarbon amino acid acting as the main inhibitory transmitter in the invertebrate and vertebrate nervous systems. The metabolism of GABA is well compartmentalized in the cell and the uptake of cytosolic GABA into the mitochondrial matrix is required for its degradation. A previous study carried out in the fruit fly Drosophila melanogaster indicated that the mitochondrial aspartate/glutamate carrier (AGC) is responsible for mitochondrial GABA accumulation. Here, we investigated the transport of GABA catalysed by the human and D. melanogaster AGC proteins through a well-established method for the study of the substrate specificity and the kinetic parameters of the mitochondrial carriers. In this experimental system, the D. melanogaster spliced AGC isoforms (Aralar1-PA and Aralar1-PE) and the human AGC isoforms (AGC1/aralar1 and AGC2/citrin) are unable to transport GABA both in homo- and in hetero-exchange with either glutamate or aspartate, i.e. the canonical substrates of AGC. Moreover, GABA has no inhibitory effect on the exchange activities catalysed by the investigated AGCs. Our data demonstrate that AGC does not transport GABA and the molecular identity of the GABA transporter in human and D. melanogaster mitochondria remains unknown.
Asunto(s)
Drosophila melanogaster , Mitocondrias , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Humanos , Drosophila melanogaster/metabolismo , Animales , Mitocondrias/metabolismo , Proteínas de Drosophila/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Transporte Biológico , Ácido Glutámico/metabolismo , Especificidad por Sustrato , Isoformas de Proteínas/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , AntiportadoresRESUMEN
The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.
Asunto(s)
Ácidos Grasos , Poliésteres , Aceites , Biocombustibles , Ácidos Grasos Insaturados , Culinaria , ÉsteresRESUMEN
The human mitochondrial carrier family (MCF) consists of 53 members. Approximately one-fifth of them are still orphans of a function. Most mitochondrial transporters have been functionally characterized by reconstituting the bacterially expressed protein into liposomes and transport assays with radiolabeled compounds. The efficacy of this experimental approach is constrained to the commercial availability of the radiolabeled substrate to be used in the transport assays. A striking example is that of N-acetylglutamate (NAG), an essential regulator of the carbamoyl synthetase I activity and the entire urea cycle. Mammals cannot modulate mitochondrial NAG synthesis but can regulate the levels of NAG in the matrix by exporting it to the cytosol, where it is degraded. The mitochondrial NAG transporter is still unknown. Here, we report the generation of a yeast cell model suitable for identifying the putative mammalian mitochondrial NAG transporter. In yeast, the arginine biosynthesis starts in the mitochondria from NAG which is converted to ornithine that, once transported into cytosol, is metabolized to arginine. The deletion of ARG8 makes yeast cells unable to grow in the absence of arginine since they cannot synthetize ornithine but can still produce NAG. To make yeast cells dependent on a mitochondrial NAG exporter, we moved most of the yeast mitochondrial biosynthetic pathway to the cytosol by expressing four E. coli enzymes, argB-E, able to convert cytosolic NAG to ornithine. Although argB-E rescued the arginine auxotrophy of arg8∆ strain very poorly, the expression of the bacterial NAG synthase (argA), which would mimic the function of a putative NAG transporter increasing the cytosolic levels of NAG, fully rescued the growth defect of arg8∆ strain in the absence of arginine, demonstrating the potential suitability of the model generated.
Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo , Mamíferos/metabolismo , Arginina/metabolismo , OrnitinaRESUMEN
Aspartate has a central role in cancer cell metabolism. Aspartate cytosolic availability is crucial for protein and nucleotide biosynthesis as well as for redox homeostasis. Since tumor cells display poor aspartate uptake from the external environment, most of the cellular pool of aspartate derives from mitochondrial catabolism of glutamine. At least four transporters are involved in this metabolic pathway: the glutamine (SLC1A5_var), the aspartate/glutamate (AGC), the aspartate/phosphate (uncoupling protein 2, UCP2), and the glutamate (GC) carriers, the last three belonging to the mitochondrial carrier family (MCF). The loss of one of these transporters causes a paucity of cytosolic aspartate and an arrest of cell proliferation in many different cancer types. The aim of this review is to clarify why different cancers have varying dependencies on metabolite transporters to support cytosolic glutamine-derived aspartate availability. Dissecting the precise metabolic routes that glutamine undergoes in specific tumor types is of upmost importance as it promises to unveil the best metabolic target for therapeutic intervention.
RESUMEN
Itaconic acid (IA) is a naturally occurring dicarboxylic acid with applications in the manufacture of polymers. IA can be produced by fermentation using the fungi Aspergillus terreus or Ustilago maydis as biocatalysts. Indirect evidence has suggested that the mitochondrial carriers U. maydis Um_Mtt1 and A. terreus At_MttA export mitochondrially synthesized cis-aconitate to the cytosol for IA synthesis using malate as a countersubstrate. Here, by assaying the transport features of recombinant Um_Mtt1 and At_MttA in reconstituted liposomes, we find that both proteins efficiently transport cis-aconitate, but malate is well transported only by Um_Mtt1 and 2-oxoglutarate only by At_MttA. Bioinformatic analysis shows that Um_Mtt1 and At_MttA form a distinctive mitochondrial carrier subfamily. Our data show that although fulfilling the same physiological task, Um_Mtt1 and At_MttA have different biochemical features.
Asunto(s)
Aspergillus/citología , Mitocondrias/metabolismo , Succinatos/metabolismo , Ustilago/citología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , CinéticaRESUMEN
The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour.
Asunto(s)
Ácido Aspártico/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glutamina/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , Transporte Biológico Activo , Línea Celular Tumoral , Citosol/metabolismo , Femenino , Humanos , Ratones , Ratones SCID , Mitocondrias/metabolismo , NADP/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Flavoprotein oxidoreductases are members of a large protein family of specialized dehydrogenases, which include type II NADH dehydrogenase, pyridine nucleotide-disulphide oxidoreductases, ferredoxin-NAD+ reductases, NADH oxidases, and NADH peroxidases, playing a crucial role in the metabolism of several prokaryotes and eukaryotes. Although several studies have been performed on single members or protein subgroups of flavoprotein oxidoreductases, a comprehensive analysis on structure-function relationships among the different members and subgroups of this great dehydrogenase family is still missing. Here, we present a structural comparative analysis showing that the investigated flavoprotein oxidoreductases have a highly similar overall structure, although the investigated dehydrogenases are quite different in functional annotations and global amino acid composition. The different functional annotation is ascribed to their participation in species-specific metabolic pathways based on the same biochemical reaction, i.e., the oxidation of specific cofactors, like NADH and FADH2. Notably, the performed comparative analysis sheds light on conserved sequence features that reflect very similar oxidation mechanisms, conserved among flavoprotein oxidoreductases belonging to phylogenetically distant species, as the bacterial type II NADH dehydrogenases and the mammalian apoptosis-inducing factor protein, until now retained as unique protein entities in Bacteria/Fungi or Animals, respectively. Furthermore, the presented computational analyses will allow consideration of FAD/NADH oxidoreductases as a possible target of new small molecules to be used as modulators of mitochondrial respiration for patients affected by rare diseases or cancer showing mitochondrial dysfunction, or antibiotics for treating bacterial/fungal/protista infections.
RESUMEN
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family. In this work, two members of this family, UCP5 (BMCP1, brain mitochondrial carrier protein 1 encoded by SLC25A14) and UCP6 (KMCP1, kidney mitochondrial carrier protein 1 encoded by SLC25A30) have been thoroughly characterized biochemically. They were overexpressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that UCP5 and UCP6 transport inorganic anions (sulfate, sulfite, thiosulfate and phosphate) and, to a lesser extent, a variety of dicarboxylates (e.g. malonate, malate and citramalate) and, even more so, aspartate and (only UCP5) glutamate and tricarboxylates. Both carriers catalyzed a fast counter-exchange transport and a very low uniport of substrates. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. The transport affinities of UCP5 and UCP6 were higher for sulfate and thiosulfate than for any other substrate, whereas the specific activity of UCP5 was much higher than that of UCP6. It is proposed that a main physiological role of UCP5 and UCP6 is to catalyze the export of sulfite and thiosulfate (the H2S degradation products) from the mitochondria, thereby modulating the level of the important signal molecule H2S.
Asunto(s)
Aniones/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatos/metabolismo , Azufre/metabolismo , Transporte Biológico , Humanos , Mitocondrias/metabolismoRESUMEN
BACKGROUND: Inflammatory myopathies are characterized by infiltration of inflammatory cells into muscle. Typically, immune-mediated disorders such as polymyositis, dermatomyositis and inclusion body myositis are diagnosed. OBJECTIVE: A small family of dogs with early onset muscle weakness and inflammatory muscle biopsies were investigated for an underlying genetic cause. METHODS: Following the histopathological diagnosis of inflammatory myopathy, mutational analysis including whole genome sequencing, functional transport studies of the mutated and wild-type proteins, and metabolomic analysis were performed. RESULTS: Whole genome resequencing identified a pathological variant in the SLC25A12 gene, resulting in a leucine to proline substitution at amino acid 349 in the mitochondrial aspartate-glutamate transporter known as the neuron and muscle specific aspartate glutamate carrier 1 (AGC1). Functionally reconstituting recombinant wild-type and mutant AGC1 into liposomes demonstrated a dramatic decrease in AGC1 transport activity and inability to transfer reducing equivalents from the cytosol into mitochondria. Targeted, broad-spectrum metabolomic analysis from affected and control muscles demonstrated a proinflammatory milieu and strong support for oxidative stress. CONCLUSIONS: This study provides the first description of a metabolic mechanism in which ablated mitochondrial glutamate transport markedly reduced the import of reducing equivalents into mitochondria and produced a highly oxidizing and proinflammatory muscle environment and an inflammatory myopathy.
Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiportadores/genética , Ácido Aspártico/genética , Enfermedades de los Perros/genética , Ácido Glutámico/genética , Mitocondrias/genética , Mutación/genética , Polimiositis/veterinaria , Animales , Ácido Aspártico/metabolismo , Dermatomiositis/metabolismo , Enfermedades de los Perros/metabolismo , Perros , Ácido Glutámico/metabolismo , Humanos , Mitocondrias/metabolismo , Miositis/genética , Oxidación-Reducción , Polimiositis/genética , Polimiositis/metabolismoRESUMEN
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.