Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(9): 2806-11, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691747

RESUMEN

Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a "head start" through a legacy of deleterious variants and differential expression originating in parental diploid populations.


Asunto(s)
Capsella/genética , Quimera/genética , Evolución Molecular , Genoma de Planta/fisiología , Poliploidía , Selección Genética , Estudio de Asociación del Genoma Completo , Mutación
2.
BMC Evol Biol ; 12: 152, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22909344

RESUMEN

BACKGROUND: Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. RESULTS: In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. CONCLUSIONS: Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome.


Asunto(s)
Evolución Biológica , Capsella/genética , Resistencia a la Enfermedad , Selección Genética , ADN de Plantas/genética , Genes de Plantas , Variación Genética , Análisis de Secuencia de ADN
3.
Mol Ecol ; 17(23): 4953-62, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18992006

RESUMEN

We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.


Asunto(s)
Arabidopsis/genética , Inmunidad Innata/genética , Polimorfismo Genético , Selección Genética , Arabidopsis/inmunología , Codón de Terminación , ADN de Plantas/genética , Evolución Molecular , Mutación del Sistema de Lectura , Genes de Plantas , Genética de Población , Genoma de Planta , Análisis de Secuencia de ADN
4.
PLoS One ; 3(6): e2411, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545707

RESUMEN

BACKGROUND: Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation. PRINCIPAL FINDINGS: We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events. CONCLUSIONS: Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata.


Asunto(s)
Arabidopsis/genética , Polimorfismo Genético , Adaptación Fisiológica , Arabidopsis/fisiología , ADN de Plantas/genética , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA