Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(45): 16511-16524, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31375563

RESUMEN

The intracellular accumulation of aggregated misfolded proteins is a cytopathological hallmark of neurodegenerative diseases. However, the functional relationship between protein misfolding or aggregation and the cellular proteostasis network that monitors and maintains proteome health is poorly understood. Previous studies have associated translational suppression and transcriptional remodeling with the appearance of protein aggregates, but whether these responses are induced by aggregates or their misfolded monomeric or oligomeric precursors remains unclear. Because aggregation in cells is rapid, nonlinear, and asynchronous, it has not been possible to deconvolve these kinetically linked processes to determine the earliest cellular responses to misfolded proteins. Upon removal of the synthetic, biologically inert ligand shield-1 (S1), AgDD, an engineered variant FK506-binding protein (FKBP1A), rapidly (t½ ∼5 min) unfolds and self-associates, forming detergent-insoluble, microscopic cytoplasmic aggregates. Using global diglycine-capture (K-GG) proteomics, we found here that this solubility transition is associated with immediate increases in ubiquitylation of AgDD itself, along with that of endogenous proteins that are components of the ribosome and the 26S proteasome. We also found that the earliest cellular responses to acute S1 removal include recruitment of ubiquitin protein ligase E3C (UBE3C) to the 26S proteasome and ubiquitylation of two key proteasomal ubiquitin receptors, 26S proteasome regulatory subunit RPN10 (RPN10) and Rpn13 homolog (RPN13 or ADRM1). We conclude that these proteasomal responses are due to AgDD protein misfolding and not to the presence of detergent-insoluble aggregates.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Morfolinas/química , Morfolinas/metabolismo , Agregado de Proteínas , Subunidades de Proteína/metabolismo , Desplegamiento Proteico , Proteómica , Proteostasis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Biochem Soc Trans ; 45(4): 923-8, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28630137

RESUMEN

It has been estimated that 10% of the human genome encodes proteins that are fatty acylated at cysteine residues. The vast majority of these proteins are modified by members of the DHHC protein family, which carry out their enzymatic function on the cytoplasmic face of cell membranes. The biomedical importance of DHHC proteins is underscored by their association with human disease; unique and essential roles for DHHC proteins have been uncovered using DHHC-deficient mouse models. Accordingly, there is great interest in elucidating the molecular mechanisms that underlie DHHC protein function. In this review, we present recent insights into the structure and function of DHHC enzymes.


Asunto(s)
Aciltransferasas/metabolismo , Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Aciltransferasas/química , Aciltransferasas/genética , Animales , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lipoilación , Mutación , Ácido Palmítico , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Especificidad de la Especie , Especificidad por Sustrato
3.
J Biol Chem ; 290(49): 29259-69, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26487721

RESUMEN

DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Zinc/química , Secuencias de Aminoácidos , Animales , Biotina/química , Dominio Catalítico , Quelantes/química , Cisteína/química , Yodoacetamida/química , Iones , Lipoilación , Lisina/química , Espectrometría de Masas , Metales/química , Ratones , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA