Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(4): 1114-1127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177353

RESUMEN

The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.


Asunto(s)
Antidepresivos , Ketamina , Plasticidad Neuronal , Humanos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Ketamina/farmacología , Ketamina/uso terapéutico , Animales , Depresión/tratamiento farmacológico , Potenciación a Largo Plazo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
2.
J Neurosci ; 43(6): 1038-1050, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36596696

RESUMEN

Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.


Asunto(s)
Ketamina , Masculino , Ratones , Animales , Ketamina/farmacología , N-Metilaspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Depresión/tratamiento farmacológico , Antidepresivos/farmacología
3.
J Neurophysiol ; 131(1): 64-74, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050689

RESUMEN

(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.


Asunto(s)
Ketamina , Ratas , Animales , Masculino , Ketamina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antidepresivos/metabolismo , Antidepresivos/farmacología , Hipocampo/metabolismo , Ácido Glutámico/metabolismo
4.
Pharmacol Rev ; 73(2): 763-791, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33674359

RESUMEN

Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.


Asunto(s)
Anestésicos , Ketamina , Antidepresivos/farmacología , Depresión , Humanos , Ketamina/farmacología , Transmisión Sináptica
5.
J Clin Psychopharmacol ; 43(2): 89-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821406

RESUMEN

BACKGROUND: Preclinical evidence indicates that the κ-opioid receptor (KOR)/dynorphin pathway is implicated in depressive-like behaviors. Ketamine is believed to partly exert its antidepressant effects by modulating the opioid system. This post hoc study examined the following research questions: (1) at baseline, were there differences in KOR or dynorphin plasma levels between individuals with major depressive disorder (MDD) and healthy volunteers (HVs) or between men and women? (2) in individuals with MDD, did KOR or dynorphin baseline plasma levels moderate ketamine's therapeutic effects or adverse effects? and (3) in individuals with MDD, were KOR or dynorphin plasma levels affected after treatment with ketamine compared with placebo? METHODS: Thirty-nine unmedicated individuals with MDD (23 women) and 25 HVs (16 women) received intravenous ketamine (0.5 mg/kg) and placebo in a randomized, crossover, double-blind trial. Blood was obtained from all participants at baseline and at 3 postinfusion time points (230 minutes, day 1, day 3). Linear mixed model regressions were used. RESULTS: At baseline, participants with MDD had lower KOR plasma levels than HVs ( F1,60 = 13.16, P < 0.001), and women (MDD and HVs) had higher KOR plasma levels than men ( F1,60 = 4.98, P = 0.03). Diagnosis and sex had no significant effects on baseline dynorphin levels. Baseline KOR and dynorphin levels did not moderate ketamine's therapeutic or adverse effects. Compared with placebo, ketamine was not associated with postinfusion changes in KOR or dynorphin levels. CONCLUSIONS: In humans, diagnosis of MDD and biological sex are involved with changes in components of the KOR/dynorphin pathway. Neither KOR nor dynorphin levels consistently moderated ketamine's therapeutic effects or adverse effects, nor were levels altered after ketamine infusion. TRIAL REGISTRATION: NCT00088699 ( ClinicalTrials.gov ).


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Masculino , Humanos , Femenino , Trastorno Depresivo Mayor/tratamiento farmacológico , Ketamina/uso terapéutico , Receptores Opioides kappa/uso terapéutico , Dinorfinas/uso terapéutico , Antidepresivos/uso terapéutico
6.
Mol Psychiatry ; 27(9): 3658-3669, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760879

RESUMEN

(R,S)-ketamine (ketamine) and its enantiomer (S)-ketamine (esketamine) can produce rapid and substantial antidepressant effects. However, individual response to ketamine/esketamine is variable, and there are no well-accepted methods to differentiate persons who are more likely to benefit. Numerous potential peripheral biomarkers have been reported, but their current utility is unclear. We conducted a systematic review/meta-analysis examining the association between baseline levels and longitudinal changes in blood-based biomarkers, and response to ketamine/esketamine. Of the 5611 citations identified, 56 manuscripts were included (N = 2801 participants), and 26 were compatible with meta-analytical calculations. Random-effect models were used, and effect sizes were reported as standardized mean differences (SMD). Our assessments revealed that more than 460 individual biomarkers were examined. Frequently studied groups included neurotrophic factors (n = 15), levels of ketamine and ketamine metabolites (n = 13), and inflammatory markers (n = 12). There were no consistent associations between baseline levels of blood-based biomarkers, and response to ketamine. However, in a longitudinal analysis, ketamine responders had statistically significant increases in brain-derived neurotrophic factor (BDNF) when compared to pre-treatment levels (SMD [95% CI] = 0.26 [0.03, 0.48], p = 0.02), whereas non-responders showed no significant changes in BDNF levels (SMD [95% CI] = 0.05 [-0.19, 0.28], p = 0.70). There was no consistent evidence to support any additional longitudinal biomarkers. Findings were inconclusive for esketamine due to the small number of studies (n = 2). Despite a diverse and substantial literature, there is limited evidence that blood-based biomarkers are associated with response to ketamine, and no current evidence of clinical utility.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antidepresivos/uso terapéutico , Biomarcadores , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico
7.
Mol Psychiatry ; 27(10): 4144-4156, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35768639

RESUMEN

The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.


Asunto(s)
Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Distribución Tisular , Antidepresivos/metabolismo
8.
Mol Psychiatry ; 27(9): 3842-3856, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35546635

RESUMEN

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


Asunto(s)
Trastorno Bipolar , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Redes Reguladoras de Genes/genética , Cerebelo/metabolismo
9.
Annu Rev Pharmacol Toxicol ; 59: 213-236, 2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30296896

RESUMEN

For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.


Asunto(s)
Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico
10.
Nature ; 533(7604): 481-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27144355

RESUMEN

Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.


Asunto(s)
Antidepresivos/metabolismo , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/metabolismo , Animales , Antidepresivos/efectos adversos , Femenino , Ketamina/efectos adversos , Ketamina/farmacología , Masculino , Ratones , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 116(13): 6441-6450, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30867285

RESUMEN

Currently approved antidepressant drugs often take months to take full effect, and ∼30% of depressed patients remain treatment resistant. In contrast, ketamine, when administered as a single subanesthetic dose, exerts rapid and sustained antidepressant actions. Preclinical studies indicate that the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a rapid-acting antidepressant drug candidate with limited dissociation properties and abuse potential. We assessed the role of group II metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) in the antidepressant-relevant actions of (2R,6R)-HNK using behavioral, genetic, and pharmacological approaches as well as cortical quantitative EEG (qEEG) measurements in mice. Both ketamine and (2R,6R)-HNK prevented mGlu2/3 receptor agonist (LY379268)-induced body temperature increases in mice lacking the Grm3, but not Grm2, gene. This action was not replicated by NMDA receptor antagonists or a chemical variant of ketamine that limits metabolism to (2R,6R)-HNK. The antidepressant-relevant behavioral effects and 30- to 80-Hz qEEG oscillation (gamma-range) increases resultant from (2R,6R)-HNK administration were prevented by pretreatment with an mGlu2/3 receptor agonist and absent in mice lacking the Grm2, but not Grm3-/-, gene. Combined subeffective doses of the mGlu2/3 receptor antagonist LY341495 and (2R,6R)-HNK exerted synergistic increases on gamma oscillations and antidepressant-relevant behavioral actions. These findings highlight that (2R,6R)-HNK exerts antidepressant-relevant actions via a mechanism converging with mGlu2 receptor signaling and suggest enhanced cortical gamma oscillations as a marker of target engagement relevant to antidepressant efficacy. Moreover, these results support the use of (2R,6R)-HNK and inhibitors of mGlu2 receptor function in clinical trials for treatment-resistant depression either alone or in combination.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Ketamina/farmacología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Aminoácidos/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/antagonistas & inhibidores , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Femenino , Fiebre , Ketamina/administración & dosificación , Ketamina/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 116(11): 5160-5169, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796190

RESUMEN

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) is a putative fast-acting antidepressant candidate. Although inhibition of NMDA-type glutamate receptors (NMDARs) is one mechanism proposed to underlie ketamine's antidepressant and adverse effects, the potency of (2R,6R)-HNK to inhibit NMDARs has not been established. We used a multidisciplinary approach to determine the effects of (2R,6R)-HNK on NMDAR function. Antidepressant-relevant behavioral responses and (2R,6R)-HNK levels in the extracellular compartment of the hippocampus were measured following systemic (2R,6R)-HNK administration in mice. The effects of ketamine, (2R,6R)-HNK, and, in some cases, the (2S,6S)-HNK stereoisomer were evaluated on the following: (i) NMDA-induced lethality in mice, (ii) NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 field of mouse hippocampal slices, (iii) NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and NMDA-evoked currents in CA1 pyramidal neurons of rat hippocampal slices, and (iv) recombinant NMDARs expressed in Xenopus oocytes. While a single i.p. injection of 10 mg/kg (2R,6R)-HNK exerted antidepressant-related behavioral and cellular responses in mice, the ED50 of (2R,6R)-HNK to prevent NMDA-induced lethality was found to be 228 mg/kg, compared with 6.4 mg/kg for ketamine. The 10 mg/kg (2R,6R)-HNK dose generated maximal hippocampal extracellular concentrations of ∼8 µM, which were well below concentrations required to inhibit synaptic and extrasynaptic NMDARs in vitro. (2S,6S)-HNK was more potent than (2R,6R)-HNK, but less potent than ketamine at inhibiting NMDARs. These data demonstrate the stereoselectivity of NMDAR inhibition by (2R,6R;2S,6S)-HNK and support the conclusion that direct NMDAR inhibition does not contribute to antidepressant-relevant effects of (2R,6R)-HNK.


Asunto(s)
Antidepresivos/farmacología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Concentración 50 Inhibidora , Ketamina/administración & dosificación , Ketamina/química , Masculino , Ratones , N-Metilaspartato/metabolismo , Subunidades de Proteína/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Xenopus laevis
13.
Annu Rev Clin Psychol ; 17: 207-231, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33561364

RESUMEN

The therapeutic onset of traditional antidepressants is delayed by several weeks and many depressed patients fail to respond to treatment altogether. In contrast, subanesthetic ketamine can rapidly alleviate symptoms of depression within hours of a single administration, even in patients who are considered treatment-resistant. Ketamine is thought to exert these effects by restoring the integrity of neural circuits that are compromised in depression. This hypothesis stems in part from preclinical observations that ketamine can strengthen synaptic connections by increasing glutamate-mediated neurotransmission and promoting rapid neurotrophic factor release. An improved understanding of how ketamine, and other novel rapid-acting antidepressants, give rise to these processes will help foster future therapeutic innovation. Here, we review the history of antidepressant treatment advances that preceded the ketamine discovery, critically examine mechanistic hypotheses for how ketamine may exert its antidepressant effects, and discuss the impact this knowledge has had on ongoing drug discovery efforts.


Asunto(s)
Ketamina , Antidepresivos/farmacología , Humanos , Ketamina/farmacología
14.
Pharmacol Rev ; 70(3): 621-660, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29945898

RESUMEN

Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.


Asunto(s)
Analgésicos/farmacología , Anestésicos/farmacología , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Analgésicos/uso terapéutico , Anestésicos/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Humanos , Ketamina/uso terapéutico
15.
Int J Neuropsychopharmacol ; 23(7): 417-425, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32236521

RESUMEN

BACKGROUND: Ketamine has rapid-acting antidepressant effects but is associated with psychotomimetic and other adverse effects. A 7-chlorokynurenic acid is a potent and specific glycine site N-methyl-d-aspartate receptor antagonist but crosses the blood-brain barrier inefficiently. Its prodrug, L-4-chlorokynurenine (4-Cl-KYN), exerts acute and sustained antidepressant-like effects in rodents and has no reported psychotomimetic effects in either rodents or healthy volunteers. This study examined whether 4-Cl-KYN has rapid antidepressant effects in individuals with treatment-resistant depression. METHODS: After a 2-week drug-free period, 19 participants with treatment-resistant depression were randomized to receive daily oral doses of 4-Cl-KYN monotherapy (1080 mg/d for 7 days, then 1440 mg/d for 7 days) or placebo for 14 days in a randomized, placebo-controlled, double-blind, crossover manner. The primary outcome measure was the Hamilton Depression Rating Scale score, assessed at several time points over a 2-week period; secondary outcome measures included additional rating scale scores. Pharmacokinetic measures of 7-chlorokynurenic acid and 4-Cl-KYN and pharmacodynamic assessments were obtained longitudinally and included 1H-magnetic resonance spectroscopy brain glutamate levels, resting-state functional magnetic resonance imaging, and plasma and cerebrospinal fluid measures of kynurenine metabolites and neurotrophic factors. RESULTS: Linear mixed models detected no treatment effects, as assessed by primary and secondary outcome measures. No difference was observed for any of the peripheral or central biological indices or for adverse effects at any time between groups. A 4-Cl-KYN was safe and well-tolerated, with generally minimal associated adverse events. CONCLUSIONS: In this small crossover trial, 4-Cl-KYN monotherapy exerted no antidepressant effects at the doses and treatment duration studied.ClinicalTrials.gov identifier: NCT02484456.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Glicina , Quinurenina/análogos & derivados , Profármacos/uso terapéutico , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Animales , Antidepresivos/efectos adversos , Encéfalo/diagnóstico por imagen , Química Encefálica/efectos de los fármacos , Estudios Cruzados , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Método Doble Ciego , Femenino , Glicina/metabolismo , Humanos , Quinurenina/efectos adversos , Quinurenina/uso terapéutico , Imagen por Resonancia Magnética , Masculino , Ratones , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento , Adulto Joven
16.
Mol Psychiatry ; 24(7): 1040-1052, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29487402

RESUMEN

Ketamine's mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine's mechanism of action from studies of healthy controls alone.


Asunto(s)
Depresión/tratamiento farmacológico , Ketamina/metabolismo , Ketamina/farmacología , Adulto , Antidepresivos/farmacología , Estudios de Casos y Controles , Estudios Cruzados , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Método Doble Ciego , Fenómenos Electrofisiológicos/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad
17.
Proc Natl Acad Sci U S A ; 113(47): E7580-E7589, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27834214

RESUMEN

Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease. Here, we show that lines of mice expressing either the ALS-FTD-linked P497S or P506T UBQLN2 mutations have cognitive deficits, shortened lifespans, and develop motor neuron disease, mimicking the human disease. Neuropathologic analysis of the mice with end-stage disease revealed the accumulation of ubiquitinated inclusions in the brain and spinal cord, astrocytosis, a reduction in the number of hippocampal neurons, and reduced staining of TAR-DNA binding protein 43 in the nucleus, with concomitant formation of ubiquitin+ inclusions in the cytoplasm of spinal motor neurons. Moreover, both lines displayed denervation muscle atrophy and age-dependent loss of motor neurons that correlated with a reduction in the number of large-caliber axons. By contrast, two mouse lines expressing WT UBQLN2 were mostly devoid of clinical and pathological signs of disease. These UBQLN2 mouse models provide valuable tools for identifying the mechanisms underlying ALS-FTD pathogenesis and for investigating therapeutic strategies to halt disease.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Mutación Missense , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Neuronas Motoras/metabolismo , Ubiquitinación
18.
J Neurovirol ; 24(2): 246-253, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29644536

RESUMEN

Cognitive impairment in HIV-1 infection is associated with the induction of chronic proinflammatory responses in the brains of infected individuals. The risk of HIV-related cognitive impairment is increased by cigarette smoking, which induces brain inflammation in rodent models. To better understand the role of smoking and the associated immune response on behavioral and motor function in HIV infection, wild-type F344 and HIV-1 transgenic (HIV1Tg) rats were exposed to either smoke from nicotine-containing (regular) cigarettes, smoke from nicotine-free cigarettes, or to nicotine alone. The animals were then tested using the rotarod test (RRT), the novel object recognition test (NORT), and the open field test (OFT). Subsequently, brain frontal cortex from the rats was analyzed for levels of TNF-α, IL-1, and IL-6. On the RRT, impairment was noted for F344 rats exposed to either nicotine-free cigarette smoke or nicotine alone and for F344 and HIV1Tg rats exposed to regular cigarette smoke. Effects from the exposures on the OFT were seen only for HIV1Tg rats, for which function was worse following exposure to regular cigarette smoke as compared to exposure to nicotine alone. Expression levels for all three cytokines were overall higher for HIV1Tg than for F344 rats. For HIV1Tg rats, TNF-α, IL-1, and IL-6 gene expression levels for all exposure groups were higher than for control rats. All F344 rat exposure groups also showed significantly increased TNF-α expression levels. However, for F344 rats, IL-1 expression levels were higher only for rats exposed to nicotine-free and nicotine-containing CS, and no increase in IL-6 gene expression was noted with any of the exposures as compared to controls. These studies, therefore, demonstrate that F344 and HIV1Tg rats show differential behavioral and immune effects from these exposures. These effects may potentially reflect differences in the responsiveness of the various brain regions in the two animal species as well as the result of direct toxicity mediated by the proinflammatory cytokines that are produced by HIV proteins and by other factors that are present in regular cigarette smoke.


Asunto(s)
Complejo SIDA Demencia/fisiopatología , Disfunción Cognitiva/fisiopatología , Lóbulo Frontal/efectos de los fármacos , Locomoción/efectos de los fármacos , Nicotina/farmacología , Desempeño Psicomotor/efectos de los fármacos , Complejo SIDA Demencia/genética , Complejo SIDA Demencia/virología , Animales , Fumar Cigarrillos/efectos adversos , Disfunción Cognitiva/genética , Disfunción Cognitiva/virología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/virología , Regulación de la Expresión Génica , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Prueba de Desempeño de Rotación con Aceleración Constante , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
19.
Int J Neuropsychopharmacol ; 21(8): 777-785, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554264

RESUMEN

BACKGROUND: The volatile anesthetic isoflurane may exert a rapid and long-lasting antidepressant effect in patients with medication-resistant depression. The mechanism underlying the putative therapeutic actions of the anesthetic have been attributed to its ability to elicit cortical burst suppression, a distinct EEG pattern with features resembling the characteristic changes that occur following electroconvulsive therapy. It is currently unknown whether the antidepressant actions of isoflurane are shared by anesthetics that do not elicit cortical burst suppression. METHODS: In vivo electrophysiological techniques were used to determine the effects of isoflurane and halothane, 2 structurally unrelated volatile anesthetics, on cortical EEG. The effects of anesthesia with either halothane or isoflurane were also compared on stress-induced learned helplessness behavior in rats and mice. RESULTS: Isoflurane, but not halothane, anesthesia elicited a dose-dependent cortical burst suppression EEG in rats and mice. Two hours of isoflurane, but not halothane, anesthesia reduced the incidence of learned helplessness in rats evaluated 2 weeks following exposure. In mice exhibiting a learned helplessness phenotype, a 1-hour exposure to isoflurane, but not halothane, reversed escape failures 24 hours following burst suppression anesthesia. CONCLUSIONS: These results are consistent with a role for cortical burst suppression in mediating the antidepressant effects of isoflurane. They provide rationale for additional mechanistic studies in relevant animal models as well as a properly controlled clinical evaluation of the therapeutic benefits associated with isoflurane anesthesia in major depressive disorder.


Asunto(s)
Anestésicos por Inhalación/farmacología , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Ondas Encefálicas/efectos de los fármacos , Encéfalo/efectos de los fármacos , Electroencefalografía , Halotano/farmacología , Desamparo Adquirido , Isoflurano/farmacología , Animales , Encéfalo/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA