Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848252

RESUMEN

ß-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drive the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging. Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify the monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 three cysteines C466, C520, and C619, leading to destabilization and degradation of CTNNB1. Through structural optimization, we generate a highly potent and relatively selective destabilizing degrader that acts through the targeting of only C619 on CTNNB1. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through destabilization-mediated degradation.

2.
ACS Chem Biol ; 19(6): 1260-1270, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739449

RESUMEN

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.


Asunto(s)
Complejo IV de Transporte de Electrones , Mitocondrias , Sesterterpenos , Humanos , Sesterterpenos/farmacología , Sesterterpenos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Proliferación Celular/efectos de los fármacos
3.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961622

RESUMEN

ß-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drives the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging deeming this transcription factor as "undruggable." Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify a monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 through targeting four distinct cysteines within the armadillo repeat domain-C439, C466, C520, and C619-leading to a destabilization of CTNNB1. Using covalent chemoproteomic approaches, we show that EN83 directly engages CTNNB1 in cells with a moderate degree of selectivity. We further demonstrate that direct covalent targeting of three of these four cysteines--C466, C520, and C619--in cells contributes to CTNNB1 degradation in cells. We also demonstrate that EN83 can be further optimized to yield more potent CTNNB1 binders and degraders. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through a destabilization-mediated degradation.

4.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945520

RESUMEN

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anti-cancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets-cysteine C53 of HIG2DA and lysine K72 of COX5A-that are part of complex IV of the electron transport chain and contributed significantly to the anti-proliferative activity. OPA activated mitochondrial respiration in a HIG2DA and COX5A-dependent manner, led to an initial spike in mitochondrial ATP, but then compromised mitochondrial membrane potential leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anti-cancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.

5.
JCI Insight ; 1(14): e88907, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27668287

RESUMEN

Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA