Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 43(W1): W182-7, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25940632

RESUMEN

Functional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function. FNTM is an ideal starting point for clinical and translational researchers considering a mouse model for their disease of interest, researchers already working with mouse models who are interested in discovering new genes related to their pathways or phenotypes of interest, and biologists working with other organisms to explore the functional relationships of their genes of interest in specific mouse tissue contexts. FNTM predicts tissue-specific functional relationships in 200 tissues, does not require any registration or installation and is freely available for use at http://fntm.princeton.edu.


Asunto(s)
Redes Reguladoras de Genes , Ratones/genética , Programas Informáticos , Animales , Internet , Especificidad de Órganos
2.
Mol Cell Proteomics ; 13(4): 1106-18, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24532841

RESUMEN

Signals that control responses to stimuli and cellular function are transmitted through the dynamic phosphorylation of thousands of proteins by protein kinases. Many techniques have been developed to study phosphorylation dynamics, including several mass spectrometry (MS)-based methods. Over the past few decades, substantial developments have been made in MS techniques for the large-scale identification of proteins and their post-translational modifications. Nevertheless, all of the current MS-based techniques for quantifying protein phosphorylation dynamics rely on the measurement of changes in peptide abundance levels, and many methods suffer from low confidence in phosphopeptide identification due to poor fragmentation. Here we have optimized an approach for the stable isotope labeling of amino acids by phosphate using [γ-¹8O4]ATP in nucleo to determine global site-specific phosphorylation rates. The advantages of this metabolic labeling technique are increased confidence in phosphorylated peptide identification, direct labeling of phosphorylation sites, measurement phosphorylation rates, and the identification of actively phosphorylated sites in a cell-like environment. In this study we calculated approximate rate constants for over 1,000 phosphorylation sites based on labeling progress curves. We measured a wide range of phosphorylation rate constants from 0.34 min⁻¹ to 0.001 min⁻¹. Finally, we applied stable isotope labeling of amino acids by phosphate to identify sites that have different phosphorylation kinetics during G1/S and M phase. We found that most sites had very similar phosphorylation rates under both conditions; however, a small subset of sites on proteins involved in the mitotic spindle were more actively phosphorylated during M phase, whereas proteins involved in DNA replication and transcription were more actively phosphorylated during G1/S phase. The data have been deposited to the ProteomeXchange with the identifier PXD000680.


Asunto(s)
Ciclo Celular , Marcaje Isotópico/métodos , Fosfoproteínas/química , Espectrometría de Masas en Tándem/métodos , Células HEK293 , Células HeLa , Humanos , Cinética , Mapeo Peptídico/métodos , Fosfoproteínas/metabolismo , Fosforilación , Proteómica
3.
Biochim Biophys Acta ; 1831(2): 251-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23085009

RESUMEN

Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic ß cells and what role they play in palmitate-induced ß cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 ß cells. This increase was associated with an increase in sphingosine kinase 1 (SphK1) mRNA and protein levels. Over-expression of SphK1 in INS-1 cells potentiated palmitate-induced accumulation of dihydrosphingosine-1-phosphate. N,N-dimethyl-sphingosine, a potent inhibitor of SphK, potentiated ß-cell apoptosis induced by palmitate whereas over-expression of SphK1 significantly reduced apoptosis induced by palmitate with high glucose. Endoplasmic reticulum (ER)-targeted SphK1 also partially inhibited apoptosis induced by palmitate. Inhibition of INS-1 apoptosis by over-expressed SphK1 was independent of sphingosine-1-phosphate receptors but was associated with a decreased formation of pro-apoptotic ceramides induced by gluco-lipotoxicity. Moreover, over-expression of SphK1 counteracted the defect in the ER-to-Golgi transport of proteins that contribute to the ceramide-dependent ER stress observed during gluco-lipotoxicity. In conclusion, our results suggest that activation of palmitate-induced SphK1-mediated sphingoid base-1-phosphate formation in the ER of ß cells plays a protective role against palmitate-induced ceramide-dependent apoptotic ß cell death.


Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Lisofosfolípidos/biosíntesis , Esfingosina/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Línea Celular Tumoral , Cromatografía Liquida , Cartilla de ADN , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Lisofosfolípidos/genética , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Ácido Palmítico , ARN Mensajero/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingosina/biosíntesis , Esfingosina/genética , Espectrometría de Masas en Tándem
4.
J Proteome Res ; 10(4): 1593-602, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21204564

RESUMEN

To interpret LC-MS/MS data in proteomics, most popular protein identification algorithms primarily use predicted fragment m/z values to assign peptide sequences to fragmentation spectra. The intensity information is often undervalued, because it is not as easy to predict and incorporate into algorithms. Nevertheless, the use of intensity to assist peptide identification is an attractive prospect and can potentially improve the confidence of matches and generate more identifications. On the basis of our previously reported study of fragmentation intensity patterns, we developed a protein identification algorithm, SeQuence IDentfication (SQID), that makes use of the coarse intensity from a statistical analysis. The scoring scheme was validated by comparing with Sequest and X!Tandem using three data sets, and the results indicate an improvement in the number of identified peptides, including unique peptides that are not identified by Sequest or X!Tandem. The software and source code are available under the GNU GPL license at http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm.


Asunto(s)
Algoritmos , Péptidos/análisis , Programas Informáticos , Espectrometría de Masas en Tándem/instrumentación , Secuencia de Aminoácidos , Aminoácidos/análisis , Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Proteínas de Drosophila/análisis , Datos de Secuencia Molecular , Proteómica/instrumentación , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Espectrometría de Masas en Tándem/métodos
5.
J Biol Chem ; 285(19): 14134-43, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20215115

RESUMEN

Both cultured neonatal rat hippocampal neurons and differentiated oligodendrocytes rapidly metabolized exogenous C(2)- and C(6)-ceramides to sphingosine (Sph) and sphingosine 1-phosphate (S1P) but only minimally to C(16-24)-ceramides. Dihydrosphinolipids were unaffected but were increased by exogenous C(6)-dihydroceramide. Conversely, quantitative liquid chromatography-tandem mass spectrometry technology showed that exogenous S1P (0.25-10 microm) was rapidly metabolized to both Sph (a >200-fold increase) and predominantly C(18)-ceramide (a >2-fold increase). Longer treatments with either C(2)-ceramide (>2.5 microm) or S1P (10 microm) led to apoptotic cell death. Thus, there is an active sphingolipid salvage pathway in both neurons and oligodendrocytes. Staurosporine-induced cell death was shown to be associated with decreased S1P and increased Sph and C(16/18)-ceramide levels. The physiological significance of this observation was confirmed by the analysis of affected white matter and plaques from brains of multiple sclerosis patients in which reduced S1P and increased Sph and C(16/18)-ceramides were observed.


Asunto(s)
Apoptosis , Ceramidas/metabolismo , Lisofosfolípidos/metabolismo , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Esfingosina/análogos & derivados , Animales , Animales Recién Nacidos , Autopsia , Encéfalo/metabolismo , Estudios de Casos y Controles , Hipocampo/metabolismo , Humanos , Esclerosis Múltiple/patología , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esfingosina/metabolismo
6.
Anal Biochem ; 408(1): 12-8, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20804717

RESUMEN

Sphingosine-1-phosphate (S1P) is a sphingolipid signaling molecule crucial for cell survival and proliferation. S1P-mediated signaling is largely controlled through its biosynthesis and degradation, and S1P lyase (S1PL) is the only known enzyme that irreversibly degrades sphingoid base-1-phosphates to phosphoethanolamine and the corresponding fatty aldehydes. S1PL-mediated degradation of S1P results in the formation of (2E)-hexadecenal, whereas hexadecanal is the product of dihydrosphingosine-1-phosphate (DHS1P) degradation. Fatty aldehydes can undergo biotransformation to fatty acids and/or alcohols, making them elusive and rendering the task of fatty aldehyde quantitation challenging. We have developed a simple, highly sensitive, and high-throughput protocol for (2E)-hexadecenal quantitation as a semicarbazone derivative by liquid chromatography-electrospray ionization-tandem mass spectrometry. The approach was applied to determining S1PL activity in vitro with the ability to use as low as 0.25µg of microsomal protein per assay. The method is also applicable to the use of total tissue homogenate as the source of S1PL. A correction for (2E)-hexadecenal disappearance due to its biotransformation during enzymatic reaction is required, especially at higher protein concentrations. The method was applied to confirm FTY720 as the inhibitor of S1PL with an IC50 value of 52.4µM.


Asunto(s)
Aldehído-Liasas/metabolismo , Aldehídos/análisis , Cromatografía Líquida de Alta Presión/métodos , Lisofosfolípidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Esfingosina/análogos & derivados , Aldehído-Liasas/antagonistas & inhibidores , Animales , Clorhidrato de Fingolimod , Hidrogenación , Cinética , Ratones , Microsomas Hepáticos/enzimología , Glicoles de Propileno/química , Ratas , Semicarbazonas/análisis , Esfingosina/química , Esfingosina/metabolismo , Estereoisomerismo , Espectrometría de Masas en Tándem
7.
Science ; 354(6311)2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789812

RESUMEN

Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics but do not capture the extent to which metabolite and enzyme concentrations vary across physiological states and, therefore, how cellular reactions are regulated. We measured enzyme and metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then assessed the extent to which flux can be explained by a Michaelis-Menten relationship between enzyme, substrate, product, and potential regulator concentrations. This revealed three previously unrecognized instances of cross-pathway regulation, which we biochemically verified. One of these involved inhibition of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates of cellular metabolic reactions, with metabolite concentrations collectively having more than double the physiological impact of enzymes.


Asunto(s)
Redes y Vías Metabólicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Citratos/metabolismo , Glucólisis , Cinética , Nitrógeno/deficiencia , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química
8.
Life Sci ; 93(9-11): 359-66, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23892195

RESUMEN

AIMS: To test the role of sphingosine-1-phosphate (S1P) signaling system in the in vivo setting of resuscitation and survival after cardiac arrest. MAIN METHODS: A mouse model of potassium-induced cardiac arrest and resuscitation was used to test the importance of S1P homeostasis in resuscitation and survival. C57BL/6 and sphingosine kinase-1 knockout (SphK1-KO) female mice were arrested for 8 min then subjected to 5 minute CPR with epinephrine bolus given at 90s after the beginning of CPR. Animal survival was monitored for 4h post-resuscitation. Upregulation of tissue and circulatory S1P levels were achieved via inhibition of S1P lyase by 2-acetyl-5-tetrahydroxybutyl imidazole (THI). Plasma and heart tissue S1P and ceramide levels were quantified by targeted ESI-LC/MS/MS. KEY FINDINGS: Lack of SphK1 and low tissue/circulatory S1P levels in SphK1-KO mice led to poor animal resuscitation after cardiac arrest and to impaired survival post-resuscitation. Inhibition of S1P lyase in SphK1-KO mice drastically improved animal resuscitation and survival. Improved resuscitation and survival of THI-treated SphK1-KO mice were better correlated with cardiac dihydro-S1P (DHS1P) than S1P levels. The lack of SphK1 and the inhibition of S1P lyase by THI were accompanied by modulation in cardiac S1PR1 and S1PR2 expression and by selective changes in plasma N-palmitoyl- and N-behenoyl-ceramide levels. SIGNIFICANCE: Our data provide evidence for the crucial role for SphK1 and S1P signaling system in resuscitation and survival after cardiac arrest, which may form the basis for development of novel therapeutic strategy to support resuscitation and long-term survival of cardiac arrest patients.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Paro Cardíaco/terapia , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Esfingosina/análogos & derivados , Animales , Reanimación Cardiopulmonar/métodos , Ceramidas/sangre , Cromatografía Liquida/métodos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Paro Cardíaco/fisiopatología , Imidazoles/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray/métodos , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Tasa de Supervivencia , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA