Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Porcine Health Manag ; 10(1): 36, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354563

RESUMEN

BACKGROUND: Within the last decades industrial swine herds in Europe grown significantly, creating an optimized reservoir for swine influenza A viruses (swIAV) to become enzootic, particularly in piglet producing herds among newborn, partly immunologically naïve piglets. To date, the only specific control measure to protect piglets from swIAV is the vaccination of sows, which provides passive immunity through maternally derived antibodies in colostrum of vaccinated sows. Interruption of infection chains through management practices have had limited success. This study focused on weaned piglets in five enzootically swIAV infected swine herds in North-West and North-East Germany and aimed to better understand swIAV infection patterns to improve piglet protection and reduce zoonotic risks. Participating farms fulfilled the following inclusion criteria: sow herd with ≥ 400 sows (actual size 600-1850 sows), piglets not vaccinated against influenza A virus and a history of recurrent respiratory problems associated with continuing influenza A virus infection. Influenza vaccination was performed in all sow herds, except for one, which discontinued vaccination during the study. RESULTS: First swIAV detections in weaned piglets occurred at 4 weeks of age in the nursery and continued to be detected in piglets up to 10 weeks of age showing enzootic swIAV infections in all herds over the entire nursery period. This included simultaneous circulation of two subtypes in a herd and co-infection with two subtypes in individual animals. Evidence for prolonged (at least 13 days) shedding was obtained in one piglet based on two consecutive swIAV positive samplings. Possible re-infection was suspected in twelve piglets based on three samplings, the second of which was swIAV negative in contrast to the first and third sampling which were swIAV positive. However, swIAV was not detected in nasal swabs from either suckling piglets or sows in the first week after farrowing. CONCLUSIONS: Predominantly, weaned piglets were infected. There was no evidence of transmission from sow to piglet based on swIAV negative nasal swabs from sows and suckling piglets. Prolonged virus shedding by individual piglets as well as the co-circulation of different swIAV subtypes in a group or even individuals emphasize the potential of swIAV to increase genetic (and potentially phenotypic) variation and the need to continue close monitoring. Understanding the dynamics of swIAV infections in enzootically infected herds has the overall goal of improving protection to reduce economic losses due to swIAV-related disease and consequently to advance animal health and well-being.

2.
Porcine Health Manag ; 10(1): 19, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764074

RESUMEN

BACKGROUND: Monitoring of infectious diseases on swine farms requires a high diagnostic sensitivity and specificity of the test system. Moreover, particularly in cases of swine influenza A virus (swIAV) it is desirable to include characterization of the virus as precisely as possible. This is indispensable for strategies concerning prophylaxis of swIAV and furthermore, to meet the requirements of a purposeful monitoring of newly emerging swIAV strains in terms of vaccine design and public health. Within the present cross-sectional study, we compared the diagnostic value of group samples (wipes of surfaces with direct contact to mouth/nose, dust wipes, udder skin wipes, oral fluids) to individual samples (nasal swabs, tracheobronchial swabs) for both swIAV identification and characterization. Sampling included different stages of pig production on 25 sow farms with attached nursery considered as enzootically infected with swIAV. Firstly, samples were analyzed for IAV genome and subsequently samples with Ct-values < 32 were subtyped by multiplex RT-qPCR. RESULTS: Nasal swabs of suckling piglets and nursery pigs resulted in a higher odds to detect swIAV (p < 0.001) and to identify swIAV subtypes by RT-qPCR (p < 0.05) compared to nasal swabs of sows. In suckling piglets, significant higher rates of swIAV detection could be observed for nasal swabs (p = 0.007) and sow udder skin wipes (p = 0.036) compared to contact wipes. In the nursery, group sampling specimens were significantly more often swIAV positive compared to individual samples (p < 0.01), with exception of the comparison between contact wipes and nasal swabs (p = 0.181). However, in general nasal swabs were more likely to have Ct-value < 32 and thus, to be suitable for subtyping by RT-qPCR compared to dust wipes, contact wipes, udder skin wipes and tracheobronchial swabs (p < 0.05). Interestingly, different subtypes were found in different age groups as well as in different specimens in the same holding. CONCLUSION: Although population-based specimens are highly effective for swIAV monitoring, nasal swabs are still the preferable sampling material for the surveillance of on-farm circulating strains due to significantly higher virus loads. Remarkably, sampling strategies should incorporate suckling piglets and different age groups within the nursery to cover as many as possible of the on-farm circulating strains.

3.
NPJ Vaccines ; 9(1): 127, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003272

RESUMEN

Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.

4.
Emerg Microbes Infect ; 12(2): 2239938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470510

RESUMEN

Respiratory disease is a significant economic issue in pig farming, with a complex aetiology that includes swine influenza A viruses (swIAV), which are common in European domestic pig populations. The most recent human influenza pandemic in 2009 showed swIAV's zoonotic potential. Monitoring pathogens and disease control are critical from a preventive standpoint, and are based on quick, sensitive, and specific diagnostic assays capable of detecting and distinguishing currently circulating swIAV in clinical samples. For passive surveillance, a set of multiplex quantitative reverse transcription real-time PCRs (mRT-qPCR) and MinION-directed sequencing was updated and deployed. Several lineages and genotypes of swIAV were shown to be dynamically developing, including novel reassortants between human pandemic H1N1 and the avian-derived H1 lineage of swIAV. Despite this, nearly 70% (842/1216) of individual samples from pigs with respiratory symptoms were swIAV-negative, hinting to different aetiologies. The complex and synergistic interactions of swIAV infections with other viral and bacterial infectious agents contribute to the aggravation of pig respiratory diseases. Using a newly developed mRT-qPCR for the combined detection of swIAV and the recently described porcine respirovirus 1 (PRV1) and swine orthopneumovirus (SOV) widespread co-circulation of PRV1 (19.6%, 238/1216 samples) and SOV (14.2%, 173/1216 samples) was evident. Because of the high incidence of PRV1 and SOV infections in pigs with respiratory disease, these viruses may emerge as new allies in the porcine respiratory disease syndrome.


Asunto(s)
Infecciones por Orthomyxoviridae , Infecciones por Pneumovirus , Enfermedades Respiratorias , Infecciones por Respirovirus , Enfermedades de los Porcinos , Alemania/epidemiología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Virus de la Influenza A/genética , Respirovirus/genética , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/veterinaria , Enfermedades Respiratorias/veterinaria , Enfermedades Respiratorias/virología , Infecciones por Pneumovirus/epidemiología , Infecciones por Pneumovirus/veterinaria , Pneumovirus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reacción en Cadena en Tiempo Real de la Polimerasa , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA