RESUMEN
B cell activation during normal immune responses and oncogenic transformation impose increased metabolic demands on B cells and their ability to retain redox homeostasis. While the serine/threonine-protein phosphatase 2A (PP2A) was identified as a tumor suppressor in multiple types of cancer, our genetic studies revealed an essential role of PP2A in B cell tumors. Thereby, PP2A redirects glucose carbon utilization from glycolysis to the pentose phosphate pathway (PPP) to salvage oxidative stress. This unique vulnerability reflects constitutively low PPP activity in B cells and transcriptional repression of G6PD and other key PPP enzymes by the B cell transcription factors PAX5 and IKZF1. Reflecting B-cell-specific transcriptional PPP-repression, glucose carbon utilization in B cells is heavily skewed in favor of glycolysis resulting in lack of PPP-dependent antioxidant protection. These findings reveal a gatekeeper function of the PPP in a broad range of B cell malignancies that can be efficiently targeted by small molecule inhibition of PP2A and G6PD.
Asunto(s)
Carbono/metabolismo , Glucosa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Glucólisis , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Estrés Oxidativo , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Vía de Pentosa Fosfato , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteína Fosfatasa 2/deficiencia , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transcripción GenéticaRESUMEN
We used clinical tissue from lethal metastatic castration-resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here, we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that shed light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients.
Asunto(s)
Fosfoproteínas/análisis , Neoplasias de la Próstata Resistentes a la Castración/química , Proteoma/análisis , Algoritmos , Humanos , Masculino , Medicina de Precisión , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal , TranscriptomaRESUMEN
Newly activated CD8(+) T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element-binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8(+) T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8(+) T cells during the transition from quiescence to activation.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Inmunidad Adaptativa/genética , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Transgenes/genéticaRESUMEN
The Warburg effect, aerobic glycolysis, is a hallmark feature of cancer cells grown in culture. However, the relative roles of glycolysis and respiratory metabolism in supporting in vivo tumor growth and processes such as tumor dissemination and metastatic growth remain poorly understood, particularly on a systems level. Using a CRISPRi mini-library enriched for mitochondrial ribosomal protein and respiratory chain genes in multiple human lung cancer cell lines, we analyzed in vivo metabolic requirements in xenograft tumors grown in distinct anatomic contexts. While knockdown of mitochondrial ribosomal protein and respiratory chain genes (mito-respiratory genes) has little impact on growth in vitro, tumor cells depend heavily on these genes when grown in vivo as either flank or primary orthotopic lung tumor xenografts. In contrast, respiratory function is comparatively dispensable for metastatic tumor growth. RNA-Seq and metabolomics analysis of tumor cells expressing individual sgRNAs against mito-respiratory genes indicate overexpression of glycolytic genes and increased sensitivity of glycolytic inhibition compared to control when grown in vitro, but when grown in vivo as primary tumors these cells down-regulate glycolytic mechanisms. These studies demonstrate that discrete perturbations of mitochondrial respiratory chain function impact in vivo tumor growth in a context-specific manner with differential impacts on primary and metastatic tumors.
Asunto(s)
Glucólisis , Neoplasias Pulmonares , Línea Celular Tumoral , Glucólisis/genética , Humanos , Neoplasias Pulmonares/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismoRESUMEN
Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.
Asunto(s)
Microbioma Gastrointestinal/genética , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Hongos/patogenicidad , Microbioma Gastrointestinal/inmunología , Salud , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/virología , Filogenia , Especificidad de la Especie , Transcriptoma , Virus/patogenicidadRESUMEN
BACKGROUND: Pancreatic neuroendocrine tumors (pNETs) are genomically diverse tumors. The management of newly diagnosed well-differentiated pNETs is limited by a lack of sensitivity of existing biomarkers for prognostication. Our goal was to investigate the potential utility of genetic markers as a predictor of progression-free survival (PFS) and recurrence-free survival (RFS). METHODS: Whole-exome sequencing of resected well-differentiated, low and intermediate-grade (G1 and G2) pNETs and normal adjacent tissue from patients who underwent resection from 2005 to 2015 was performed. Genetic alterations were classified using pan-genomic and oncogenic pathway classifications. Additional samples with genetic and clinicopathologic data available were obtained from the publicly available International Cancer Genome Consortium (ICGC) database and included in the analysis. The prognostic relevance of these genomic signatures on PFS and RFS was analyzed. RESULTS: Thirty-one patients who underwent resection for pNET were identified. Genomic analysis of mutational, copy number, cytogenetic, and complex phenomena revealed similar patterns to prior studies of pNETs with relatively few somatic gene mutations but numerous instances of copy number changes. Analysis of genomic and clinicopathologic outcomes using the combined data from our study as well as the ICGC pNET cohort (n = 124 patients) revealed that the recurrent pattern of whole chromosome loss (RPCL) and metastatic disease were independently associated with disease progression. When evaluating patients with local disease at the time of resection, RPCL and alterations in the TGFß oncogenic pathway were independently associated with the risk of recurrence. CONCLUSIONS: Well-differentiated pNETs are genomically diverse tumors. Pathway signatures may be prognostic for predicting disease progression and recurrence.
RESUMEN
In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary Information to this Amendment for transparency. The error does not affect the conclusions of the Letter. In addition, Source Data files have been added for the Figs. 1-4 and Extended Data Figs. 1-10 of the original Letter.
RESUMEN
B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.
Asunto(s)
Linfocitos B/metabolismo , Metabolismo Energético/genética , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Factores de Transcripción/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/efectos de los fármacos , Carcinogénesis/genética , Proteínas Portadoras/agonistas , Proteínas Portadoras/metabolismo , Muerte Celular , Inmunoprecipitación de Cromatina , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Femenino , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Humanos , Factor de Transcripción Ikaros/metabolismo , Ratones , Ratones Transgénicos , Factor de Transcripción PAX5/deficiencia , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Pirúvico/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Receptores de Glucocorticoides/metabolismo , Análisis de Secuencia de ARNRESUMEN
Genomic instability contributes to tumorigenesis through the amplification and deletion of cancer driver genes. DNA copy number (CN) profiling of ensembles of tumors allows a thermodynamic analysis of the profile for each tumor. The free energy of the distribution of CNs is found to be a monotonically increasing function of the average chromosomal ploidy. The dependence is universal across several cancer types. Surprisal analysis distinguishes two main known subgroups: tumors with cells that have or have not undergone whole-genome duplication (WGD). The analysis uncovers that CN states having a narrower distribution are energetically more favorable toward the WGD transition. Surprisal analysis also determines the deviations from a fully stable-state distribution. These deviations reflect constraints imposed by tumor fitness selection pressures. The results point to CN changes that are more common in high-ploidy tumors and thus support altered selection pressures upon WGD.
Asunto(s)
Dosificación de Gen/genética , Inestabilidad Genómica/genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN/genética , Genoma/genética , Humanos , Ploidias , TermodinámicaRESUMEN
Small cell carcinoma of the bladder (SCCB) is a rare and lethal phenotype of bladder cancer. The pathogenesis and molecular features are unknown. Here, we established a genetically engineered SCCB model and a cohort of patient SCCB and urothelial carcinoma samples to characterize molecular similarities and differences between bladder cancer phenotypes. We demonstrate that SCCB shares a urothelial origin with other bladder cancer phenotypes by showing that urothelial cells driven by a set of defined oncogenic factors give rise to a mixture of tumor phenotypes, including small cell carcinoma, urothelial carcinoma, and squamous cell carcinoma. Tumor-derived single-cell clones also give rise to both SCCB and urothelial carcinoma in xenografts. Despite this shared urothelial origin, clinical SCCB samples have a distinct transcriptional profile and a unique transcriptional regulatory network. Using the transcriptional profile from our cohort, we identified cell surface proteins (CSPs) associated with the SCCB phenotype. We found that the majority of SCCB samples have PD-L1 expression in both tumor cells and tumor-infiltrating lymphocytes, suggesting that immune checkpoint inhibitors could be a treatment option for SCCB. We further demonstrate that our genetically engineered tumor model is a representative tool for investigating CSPs in SCCB by showing that it shares a similar a CSP profile with clinical samples and expresses SCCB-up-regulated CSPs at both the mRNA and protein levels. Our findings reveal distinct molecular features of SCCB and provide a transcriptional dataset and a preclinical model for further investigating SCCB biology.
Asunto(s)
Carcinoma de Células Pequeñas/patología , Carcinoma de Células Transicionales/patología , Transformación Celular Neoplásica/genética , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Urotelio/patología , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/terapia , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/terapia , Transformación Celular Neoplásica/efectos de los fármacos , Células Cultivadas , Cistectomía , Conjuntos de Datos como Asunto , Células Epiteliales , Regulación Neoplásica de la Expresión Génica , Ingeniería Genética , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Cultivo Primario de Células , RNA-Seq , Vejiga Urinaria/citología , Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Urotelio/citología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.
Asunto(s)
Resistencia a Antineoplásicos , Eliminación de Gen , Integrina alfa6 , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Pirimidinas/farmacología , Animales , Anticuerpos Antineoplásicos/farmacología , Anticuerpos Neutralizantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapiaRESUMEN
B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In â¼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation--above a maximum threshold--will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR-ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.
Asunto(s)
Linfocitos B/metabolismo , Linfocitos B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal , Secuencias de Aminoácidos/genética , Animales , Antígenos CD/metabolismo , Linfocitos B/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Proteínas de Fusión bcr-abl/genética , Eliminación de Gen , Humanos , Inositol Polifosfato 5-Fosfatasas , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo , Células Precursoras de Linfocitos B/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/deficiencia , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasa Syk , Tirosina/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting.
Asunto(s)
Antígenos de Superficie/análisis , Antígenos de Superficie/inmunología , Carcinoma Neuroendocrino/terapia , Neoplasias de la Próstata/terapia , Proteoma/análisis , Linfocitos T/trasplante , Transcriptoma , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/inmunología , Antígeno Carcinoembrionario/metabolismo , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/inmunología , Carcinoma Neuroendocrino/metabolismo , Diferenciación Celular , Células Cultivadas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Próstata/inmunología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Proteoma/inmunología , Linfocitos T/citología , Linfocitos T/inmunologíaRESUMEN
Continuous BRAF inhibition of BRAF mutant melanomas triggers a series of cell state changes that lead to therapy resistance and escape from immune control before establishing acquired resistance genetically. We used genome-wide transcriptomics and single-cell phenotyping to explore the response kinetics to BRAF inhibition for a panel of patient-derived BRAFV600 -mutant melanoma cell lines. A subset of plastic cell lines, which followed a trajectory covering multiple known cell state transitions, provided models for more detailed biophysical investigations. Markov modeling revealed that the cell state transitions were reversible and mediated by both Lamarckian induction and nongenetic Darwinian selection of drug-tolerant states. Single-cell functional proteomics revealed activation of certain signaling networks shortly after BRAF inhibition, and before the appearance of drug-resistant phenotypes. Drug targeting those networks, in combination with BRAF inhibition, halted the adaptive transition and led to prolonged growth inhibition in multiple patient-derived cell lines.
Asunto(s)
Resistencia a Antineoplásicos , Melanoma/genética , Melanoma/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Adaptación Fisiológica , Antineoplásicos/farmacología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Cadenas de Markov , Melanoma/tratamiento farmacológico , Melanoma/patología , FN-kappa B/metabolismo , Fenotipo , Proteoma , Proteómica/métodos , Proteínas Proto-Oncogénicas B-raf/genéticaRESUMEN
BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).
Asunto(s)
Resistencia a Antineoplásicos/genética , Inmunoterapia , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Melanoma/genética , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microglobulina beta-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Biopsia , Exoma , Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , Humanos , Interferón gamma/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/secundario , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Análisis de Secuencia de ADN , Transducción de SeñalRESUMEN
BACKGROUND: Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma. METHODS: We analyzed RNA sequencing data from 53 in-house established human melanoma cell lines and 479 melanoma tumors from The Cancer Genome Atlas dataset. We evaluated global gene expression patterns associated with IL32 expression. We also evaluated the impact of proinflammatory molecules TNFα and IFNγ on IL32 expression and dedifferentiation in melanoma cell lines in vitro. In order to study the transcriptional regulation of IL32 in these cell lines, we cloned up to 10.5 kb of the 5' upstream region of the human IL32 gene into a luciferase reporter vector. RESULTS: A significant proportion of established human melanoma cell lines express IL32, with its expression being highly correlated with a dedifferentiation genetic signature (high AXL/low MITF). Non IL32-expressing differentiated melanoma cell lines exposed to TNFα or IFNγ can be induced to express the three predominant isoforms (α, ß, γ) of IL32. Cis-acting elements within this 5' upstream region of the human IL32 gene appear to govern both induced and constitutive gene expression. In the tumor microenvironment, IL32 expression is highly correlated with genes related to T cell infiltration, and also positively correlates with high AXL/low MITF dedifferentiated gene signature. CONCLUSIONS: Expression of IL32 in human melanoma can be induced by TNFα or IFNγ and correlates with a treatment-resistant dedifferentiated genetic signature. Constitutive and induced expression are regulated, in part, by cis-acting sequences within the 5' upstream region.
Asunto(s)
Interleucinas/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Biopsia , Desdiferenciación Celular/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Melanoma/patología , Análisis por Micromatrices , Metástasis de la Neoplasia , Neoplasias Cutáneas/patología , Transcriptoma , Microambiente Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed "oncogene addiction." Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML). We show that MLL-AF9 contributes to leukemia maintenance by enforcing a Myb-coordinated program of aberrant self-renewal involving genes linked to leukemia stem cell potential and poor prognosis in human AML. Accordingly, partial and transient Myb suppression precisely phenocopies MLL-AF9 withdrawal and eradicates aggressive AML in vivo without preventing normal myelopoiesis, indicating that strategies to inhibit Myb-dependent aberrant self-renewal programs hold promise as effective and cancer-specific therapeutics. Together, our results identify Myb as a critical mediator of oncogene addiction in AML, delineate relevant Myb target genes that are amenable to pharmacologic inhibition, and establish a general approach for dissecting oncogene addiction in vivo.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia/fisiopatología , Oncogenes/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Animales , Modelos Animales de Enfermedad , Genes myb/genética , Hematopoyesis , Ratones , Proteínas de Fusión Oncogénica/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogénicas c-myb/genética , Interferencia de ARNRESUMEN
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.
Asunto(s)
Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica/métodos , Glucólisis , Neoplasias/genética , Línea Celular Tumoral , Evolución Molecular , Amplificación de Genes , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Redes y Vías Metabólicas , Análisis de Componente Principal , Selección GenéticaRESUMEN
BACKGROUND: Occult metastatic tumors, below imaging thresholds, are a limitation of staging systems that rely on cross-sectional imaging alone and are a cause of the routine understaging of pancreatic ductal adenocarcinomas (PDACs). We investigated circulating tumor cells (CTCs) as a preoperative predictor of occult metastatic disease and as a prognostic biomarker for PDAC patients. EXPERIMENTAL DESIGN: A total of 126 patients (100 with cancer, 26 with benign disease) were enrolled in our study and CTCs were identified and enumerated from 4 mL of venous blood using the microfluidic NanoVelcro assay. CTC enumeration was correlated with clinicopathologic variables and outcomes following both surgical and systemic therapies. RESULTS: CTCs were identified in 78% of PDAC patients and CTC counts correlated with increasing stage (ρ = 0.42, p < 0.001). Of the 53 patients taken for potentially curative surgery, 13 (24.5%) had occult metastatic disease intraoperatively. Patients with occult disease had significantly more CTCs than patients with local disease only (median 7 vs. 1 CTC, p < 0.0001). At a cut-off of three or more CTCs/4 mL, CTCs correctly identified patients with occult metastatic disease preoperatively (area under the receiver operating characteristic curve 0.82, 95% confidence interval (CI) 0.76-0.98, p < 0.0001). CTCs were a univariate predictor of recurrence-free survival following surgery [hazard ratio (HR) 2.36, 95% CI 1.17-4.78, p = 0.017], as well as an independent predictor of overall survival on multivariate analysis (HR 1.38, 95% CI 1.01-1.88, p = 0.040). CONCLUSIONS: CTCs show promise as a prognostic biomarker for PDAC patients at all stages of disease being treated both medically and surgically. Furthermore, CTCs demonstrate potential as a preoperative biomarker for identifying patients at high risk of occult metastatic disease.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/secundario , Neoplasias Hepáticas/secundario , Recurrencia Local de Neoplasia/patología , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/patología , Neoplasias Peritoneales/secundario , Anciano , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/cirugía , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/cirugía , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/cirugía , Pancreatectomía , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/cirugía , Neoplasias Peritoneales/sangre , Neoplasias Peritoneales/cirugía , Pronóstico , Estudios Prospectivos , Tasa de SupervivenciaRESUMEN
Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-ß-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer.