Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 49(2): e10, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33290507

RESUMEN

Results of massive parallel sequencing-by-synthesis vary depending on the sequencing approach. CoolMPS™ is a new sequencing chemistry that incorporates bases by labeled antibodies. To evaluate the performance, we sequenced 240 human non-coding RNA samples (dementia patients and controls) with and without CoolMPS. The Q30 value as indicator of the per base sequencing quality increased from 91.8 to 94%. The higher quality was reached across the whole read length. Likewise, the percentage of reads mapping to the human genome increased from 84.9 to 86.2%. For both technologies, we computed similar distributions between different RNA classes (miRNA, piRNA, tRNA, snoRNA and yRNA) and within the classes. While standard sequencing-by-synthesis allowed to recover more annotated miRNAs, CoolMPS yielded more novel miRNAs. The correlation between the two methods was 0.97. Evaluating the diagnostic performance, we observed lower minimal P-values for CoolMPS (adjusted P-value of 0.0006 versus 0.0004) and larger effect sizes (Cohen's d of 0.878 versus 0.9). Validating 19 miRNAs resulted in a correlation of 0.852 between CoolMPS and reverse transcriptase-quantitative polymerase chain reaction. Comparison to data generated with Illumina technology confirmed a known shift in the overall RNA composition. With CoolMPS we evaluated a novel sequencing-by-synthesis technology showing high performance for the analysis of non-coding RNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN no Traducido/química , Análisis de Secuencia de ARN/métodos , Especificidad de Anticuerpos , Biomarcadores , Biología Computacional , ADN Complementario/genética , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Demencia/sangre , Demencia/genética , Técnica del Anticuerpo Fluorescente Directa , Biblioteca de Genes , Humanos , Biopsia Líquida , MicroARNs/química , MicroARNs/genética , Nucleótidos/inmunología , ARN no Traducido/síntesis química , ARN no Traducido/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Nucleic Acids Res ; 48(W1): W521-W528, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32374865

RESUMEN

Gene set enrichment analysis has become one of the most frequently used applications in molecular biology research. Originally developed for gene sets, the same statistical principles are now available for all omics types. In 2016, we published the miRNA enrichment analysis and annotation tool (miEAA) for human precursor and mature miRNAs. Here, we present miEAA 2.0, supporting miRNA input from ten frequently investigated organisms. To facilitate inclusion of miEAA in workflow systems, we implemented an Application Programming Interface (API). Users can perform miRNA set enrichment analysis using either the web-interface, a dedicated Python package, or custom remote clients. Moreover, the number of category sets was raised by an order of magnitude. We implemented novel categories like annotation confidence level or localisation in biological compartments. In combination with the miRBase miRNA-version and miRNA-to-precursor converters, miEAA supports research settings where older releases of miRBase are in use. The web server also offers novel comprehensive visualizations such as heatmaps and running sum curves with background distributions. We demonstrate the new features with case studies for human kidney cancer, a biomarker study on Parkinson's disease from the PPMI cohort, and a mouse model for breast cancer. The tool is freely accessible at: https://www.ccb.uni-saarland.de/mieaa2.


Asunto(s)
MicroARNs/metabolismo , Programas Informáticos , Animales , Biomarcadores , Neoplasias de la Mama/genética , Carcinoma de Células Renales/genética , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Renales/genética , Ratones , Enfermedad de Parkinson/genética , Flujo de Trabajo
3.
Nucleic Acids Res ; 48(W1): W515-W520, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32379325

RESUMEN

We present GeneTrail 3, a major extension of our web service GeneTrail that offers rich functionality for the identification, analysis, and visualization of deregulated biological processes. Our web service provides a comprehensive collection of biological processes and signaling pathways for 12 model organisms that can be analyzed with a powerful framework for enrichment and network analysis of transcriptomic, miRNomic, proteomic, and genomic data sets. Moreover, GeneTrail offers novel workflows for the analysis of epigenetic marks, time series experiments, and single cell data. We demonstrate the capabilities of our web service in two case-studies, which highlight that GeneTrail is well equipped for uncovering complex molecular mechanisms. GeneTrail is freely accessible at: http://genetrail.bioinf.uni-sb.de.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Programas Informáticos , Envejecimiento/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Epigenómica/métodos , Genómica/métodos , Humanos , Activación de Linfocitos , Ratones , Microglía/metabolismo , Proteómica/métodos , Transducción de Señal , Análisis de la Célula Individual/métodos
4.
Bioinformatics ; 35(24): 5171-5181, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31038669

RESUMEN

MOTIVATION: Breast cancer is the second leading cause of cancer death among women. Tumors, even of the same histopathological subtype, exhibit a high genotypic diversity that impedes therapy stratification and that hence must be accounted for in the treatment decision-making process. RESULTS: Here, we present ClinOmicsTrailbc, a comprehensive visual analytics tool for breast cancer decision support that provides a holistic assessment of standard-of-care targeted drugs, candidates for drug repositioning and immunotherapeutic approaches. To this end, our tool analyzes and visualizes clinical markers and (epi-)genomics and transcriptomics datasets to identify and evaluate the tumor's main driver mutations, the tumor mutational burden, activity patterns of core cancer-relevant pathways, drug-specific biomarkers, the status of molecular drug targets and pharmacogenomic influences. In order to demonstrate ClinOmicsTrailbc's rich functionality, we present three case studies highlighting various ways in which ClinOmicsTrailbc can support breast cancer precision medicine. ClinOmicsTrailbc is a powerful integrated visual analytics tool for breast cancer research in general and for therapy stratification in particular, assisting oncologists to find the best possible treatment options for their breast cancer patients based on actionable, evidence-based results. AVAILABILITY AND IMPLEMENTATION: ClinOmicsTrailbc can be freely accessed at https://clinomicstrail.bioinf.uni-sb.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Mama , Biología Computacional , Femenino , Genómica , Humanos , Medicina de Precisión
5.
J Med Internet Res ; 22(12): e24514, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33237878

RESUMEN

BACKGROUND: The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has instigated immediate and massive worldwide research efforts. Rapid publication of research data may be desirable but also carries the risk of quality loss. OBJECTIVE: This analysis aimed to correlate the severity of the COVID-19 outbreak with its related scientific output per country. METHODS: All articles related to the COVID-19 pandemic were retrieved from Web of Science and analyzed using the web application SciPE (science performance evaluation), allowing for large data scientometric analyses of the global geographical distribution of scientific output. RESULTS: A total of 7185 publications, including 2592 articles, 2091 editorial materials, 2528 early access papers, 1479 letters, 633 reviews, and other contributions were extracted. The top 3 countries involved in COVID-19 research were the United States, China, and Italy. The confirmed COVID-19 cases or deaths per region correlated with scientific research output. The United States was most active in terms of collaborative efforts, sharing a significant amount of manuscript authorships with the United Kingdom, China, and Italy. The United States was China's most frequent collaborative partner, followed by the United Kingdom. CONCLUSIONS: The COVID-19 research landscape is rapidly developing and is driven by countries with a generally strong prepandemic research output but is also significantly affected by countries with a high prevalence of COVID-19 cases. Our findings indicate that the United States is leading international collaborative efforts.


Asunto(s)
COVID-19/epidemiología , Publicaciones/estadística & datos numéricos , COVID-19/virología , Humanos , Cooperación Internacional , Pandemias , SARS-CoV-2/aislamiento & purificación
6.
Genomics Proteomics Bioinformatics ; 20(2): 274-287, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34839011

RESUMEN

The composition of the gut microbiota is linked to multiple diseases, including Parkinson's disease (PD). Abundance of bacteria producing short-chain fatty acids (SCFAs) and fecal SCFA concentrations are reduced in PD. SCFAs exert various beneficial functions in humans. In the interventional, monocentric, open-label clinical trial "Effects of Resistant Starch on Bowel Habits, Short Chain Fatty Acids and Gut Microbiota in Parkinson'sDisease" (RESISTA-PD; ID: NCT02784145), we aimed at altering fecal SCFAs by an 8-week prebiotic intervention with resistant starch (RS). We enrolled 87 subjects in three study-arms: 32 PD patients received RS (PD + RS), 30 control subjects received RS, and 25 PD patients received solely dietary instructions. We performed paired-end 100 bp length metagenomic sequencing of fecal samples using the BGISEQ platform at an average of 9.9 GB. RS was well-tolerated. In the PD + RS group, fecal butyrate concentrations increased significantly, and fecal calprotectin concentrations dropped significantly after 8 weeks of RS intervention. Clinically, we observed a reduction in non-motor symptom load in the PD + RS group. The reference-based analysis of metagenomes highlighted stable alpha-diversity and beta-diversity across the three groups, including bacteria producing SCFAs. Reference-free analysis suggested punctual, yet pronounced differences in the metagenomic signature in the PD + RS group. RESISTA-PD highlights that a prebiotic treatment with RS is safe and well-tolerated in PD. The stable alpha-diversity and beta-diversity alongside altered fecal butyrate and calprotectin concentrations call for long-term studies, also investigating whether RS is able to modify the clinical course of PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Bacterias/genética , Biomarcadores , Butiratos/farmacología , Ácidos Grasos Volátiles/farmacología , Heces/microbiología , Complejo de Antígeno L1 de Leucocito/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Prebióticos , Almidón Resistente
7.
Nat Commun ; 13(1): 6209, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266340

RESUMEN

To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.


Asunto(s)
Actinas , Cadenas Ligeras de Miosina , Humanos , Animales , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Actinas/metabolismo , Pez Cebra/metabolismo , Calcio/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteínas Quinasas/metabolismo
8.
Nat Aging ; 1(3): 309-322, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118411

RESUMEN

Noncoding RNAs have diagnostic and prognostic importance in Parkinson's disease (PD). We studied circulating small noncoding RNAs (sncRNAs) in two large-scale longitudinal PD cohorts (Parkinson's Progression Markers Initiative (PPMI) and Luxembourg Parkinson's Study (NCER-PD)) and modeled their impact on the transcriptome. Sequencing of sncRNAs in 5,450 blood samples of 1,614 individuals in PPMI yielded 323 billion reads, most of which mapped to microRNAs but covered also other RNA classes such as piwi-interacting RNAs, ribosomal RNAs and small nucleolar RNAs. Dysregulated microRNAs associated with disease and disease progression occur in two distinct waves in the third and seventh decade of life. Originating predominantly from immune cells, they resemble a systemic inflammation response and mitochondrial dysfunction, two hallmarks of PD. Profiling 1,553 samples from 1,024 individuals in the NCER-PD cohort validated biomarkers and main findings by an independent technology. Finally, network analysis of sncRNA and transcriptome sequencing from PPMI identified regulatory modules emerging in patients with progressing PD.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , ARN Pequeño no Traducido , Humanos , ARN Pequeño no Traducido/genética , Transcriptoma/genética , Enfermedad de Parkinson/diagnóstico , MicroARNs/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Progresión de la Enfermedad
9.
Nat Commun ; 11(1): 5958, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235214

RESUMEN

Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-transcriptional gene silencing through base-pair binding on their target mRNAs. We identified nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy individuals. We observed a larger influence of the age as compared to the sex and provide evidence for a shift to the 5' mature form of miRNAs in healthy aging. The addition of 3059 diseased patients uncovered pan-disease and disease-specific alterations in aging profiles. Disease biomarker sets for all diseases were different between young and old patients. Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell intrinsic gene expression changes may impart greater significance than cell abundance changes to the whole blood miRNA profile. Altogether, these data provide a foundation for understanding the relationship between healthy aging and disease, and for the development of age-specific disease biomarkers.


Asunto(s)
Envejecimiento/genética , Biomarcadores , MicroARNs/sangre , Adulto , Anciano , Envejecimiento/metabolismo , Enfermedad/genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Envejecimiento Saludable/genética , Humanos , Masculino , MicroARNs/genética , RNA-Seq/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA