Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730854

RESUMEN

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Asunto(s)
Conducta Alimentaria/fisiología , Fenómenos Genéticos , Células Receptoras Sensoriales/fisiología , Nervio Vago/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Encéfalo/fisiología , Tracto Gastrointestinal/inervación , Marcadores Genéticos , Mecanorreceptores/metabolismo , Ratones , Nervio Vago/anatomía & histología , Vísceras/inervación
2.
Nature ; 608(7922): 374-380, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831501

RESUMEN

Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Hipotálamo , Vías Nerviosas , Nutrientes , Estado de Hidratación del Organismo , Área Tegmental Ventral , Animales , Señales (Psicología) , Digestión , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ingestión de Alimentos , Tracto Gastrointestinal/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Nutrientes/metabolismo , Estado de Hidratación del Organismo/efectos de los fármacos , Recompensa , Factores de Tiempo , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Agua/metabolismo , Agua/farmacología , Equilibrio Hidroelectrolítico
3.
Neuron ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39153476

RESUMEN

The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.

4.
bioRxiv ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38077047

RESUMEN

The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here we show that hunger-promoting AgRP neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA