Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475894

RESUMEN

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Asunto(s)
Hígado/citología , Hígado/fisiología , Ribosomas/metabolismo , Animales , Núcleo Celular/metabolismo , Tamaño de la Célula , Ritmo Circadiano , Exosomas/metabolismo , Hepatocitos/citología , Hepatocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fotoperiodo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Ribosomas/química
2.
Genes Dev ; 35(11-12): 899-913, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016691

RESUMEN

In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.


Asunto(s)
Relojes Circadianos/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Animales , Retroalimentación Fisiológica , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Circadianas Period/genética
3.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452855

RESUMEN

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Asunto(s)
Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Animales , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Cruzamientos Genéticos , Citoplasma/metabolismo , Proteínas F-Box/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteolisis
4.
Trends Biochem Sci ; 47(9): 745-758, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577675

RESUMEN

The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Descubrimiento de Drogas
5.
Genes Dev ; 30(17): 1909-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664233

RESUMEN

In mammals, rhythms in body temperature help to entrain and synchronize circadian rhythms throughout the organism, and the cold-inducible RNA-binding protein (CIRBP) is one of the mediators of these daily temperature changes. Cirbp mRNA expression is regulated by the daily subtle rhythms in body temperature, and a new study by Gotic and colleagues (pp. 2005-2017) reveals a surprising and novel mechanism that involves temperature-dependent enhancement of splicing efficiency.


Asunto(s)
Ritmo Circadiano/genética , Frío , Animales , Empalme del ARN , Temperatura
6.
Cell ; 134(5): 728-42, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775307

RESUMEN

The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.


Asunto(s)
Ritmo Circadiano , Redes y Vías Metabólicas , Animales , Relojes Biológicos , Conducta Alimentaria , Humanos
7.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879354

RESUMEN

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Asunto(s)
Ritmo Circadiano/fisiología , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidasas/metabolismo , Estrés Oxidativo/fisiología , Factores de Transcripción/metabolismo , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Transcriptoma
8.
Biochemistry ; 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35535990

RESUMEN

Endogenous circadian clocks control the rhythmicity of a broad range of behavioral and physiological processes, and this is entrained by the daily fluctuations in light and dark. Nocturnin (Noct) is a rhythmically expressed gene regulated by the circadian clock that belongs to the CCR4 family of endonuclease-exonuclease-phosphatase (EEP) enzymes, and the NOCT protein exhibits phosphatase activity, catalyzing the removal of the 2'-phosphate from NADP(H). In addition to its daily nighttime peak of expression, it is also induced by acute stimuli. Loss of Nocturnin (Noct-/-) in mice results in resistance to high-fat diet-induced obesity, and loss of Noct in HEK293T cells confers a protective effect to oxidative stress. Modeling of the full-length Nocturnin protein reveals a partially structured amino terminus that is disparate from its CCR4 family members. The high sequence conservation of a leucine zipper-like (LZ-like) motif, the only structural element in the amino terminus, highlights the potential importance of this domain in modulating phosphatase activity. In vitro biochemical and biophysical techniques demonstrate that the LZ-like domain within the flexible N-terminus is necessary for preserving the active site cleft in an optimal conformation to promote the efficient turnover of the substrate. This modulation occurs in cis and is pivotal in maintaining the stability and conformational integrity of the enzyme. These new findings suggest an additional layer of modulating the activity of Nocturnin in addition to its rhythmicity to provide fine-tuned control over cellular levels of NADPH.

9.
Proc Natl Acad Sci U S A ; 116(39): 19449-19457, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31484780

RESUMEN

Computational and biochemical studies implicate the blue-light sensor cryptochrome (CRY) as an endogenous light-dependent magnetosensor enabling migratory birds to navigate using the Earth's magnetic field. Validation of such a mechanism has been hampered by the absence of structures of vertebrate CRYs that have functional photochemistry. Here we present crystal structures of Columba livia (pigeon) CRY4 that reveal evolutionarily conserved modifications to a sequence of Trp residues (Trp-triad) required for CRY photoreduction. In ClCRY4, the Trp-triad chain is extended to include a fourth Trp (W369) and a Tyr (Y319) residue at the protein surface that imparts an unusually high quantum yield of photoreduction. These results are consistent with observations of night migratory behavior in animals at low light levels and could have implications for photochemical pathways allowing magnetosensing.


Asunto(s)
Columbidae/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Secuencia de Aminoácidos , Migración Animal/fisiología , Animales , Luz , Campos Magnéticos , Fotoquímica/métodos , Relación Estructura-Actividad , Vertebrados/metabolismo
10.
Eur J Neurosci ; 51(1): 139-165, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30402960

RESUMEN

Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.


Asunto(s)
Relojes Circadianos , Factores de Transcripción ARNTL , Animales , Proteínas CLOCK/genética , Ritmo Circadiano
11.
Annu Rev Neurosci ; 35: 445-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22483041

RESUMEN

The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Transducción de Señal/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Conducta Alimentaria/fisiología , Mamíferos/fisiología , Metanfetamina/farmacología , Modelos Biológicos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(42): E8855-E8864, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973913

RESUMEN

We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.


Asunto(s)
Ritmo Circadiano/fisiología , MicroARNs/genética , Proteínas Circadianas Period/genética , Regiones no Traducidas 3' , Animales , Relojes Circadianos/genética , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Luciferasas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Circadianas Period/metabolismo , Biosíntesis de Proteínas , Temperatura
13.
Genes Dev ; 26(24): 2724-36, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23249735

RESUMEN

Poly(A) tails are 3' modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Poli A/genética , ARN Mensajero/genética , Animales , Citoplasma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Poliadenilación , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
J Cell Physiol ; 234(11): 20228-20239, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30953371

RESUMEN

Nocturnin (NOCT) belongs to the Mg2+ dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ. In this study, we characterized the skeletal and adipose tissue phenotype when we globally overexpressed Noct in vivo. After 12 weeks of Noct overexpression, transgenic male mice had lower fat mass compared to controls, with no significant differences in the skeleton. Based on the presence of a mitochondrial target sequence in NOCT, we determined that mouse NOCT protein localizes to the mitochondria; subsequently, we found that NOCT overexpression led to a significant increase in the preadipocytes ability to utilize oxidative phosphorylation for ATP (adenosine triphosphate) generation. In summary, the effects of NOCT on adipocytes are likely through its novel role as a mediator of mitochondrial function.


Asunto(s)
Adipogénesis/fisiología , Grasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular/fisiología , Células HEK293 , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Modelos Animales , Fosforilación Oxidativa , PPAR gamma/metabolismo , ARN Mensajero/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(44): E4769-78, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25324524

RESUMEN

The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)). FUS(WT) and FUS(R521G) mice that develop severe motor deficits also show neuroinflammation, denervated neuromuscular junctions, and premature death, phenocopying the human diseases. A portion of FUS(R521G) mice escape early lethality; these escapers have modest motor impairments and altered sociability, which correspond with a reduction of dendritic arbors and mature spines. Remarkably, only FUS(R521G) mice show dendritic defects; FUS(WT) mice do not. Activation of metabotropic glutamate receptors 1/5 in neocortical slices and isolated synaptoneurosomes increases endogenous mouse FUS and FUS(WT) protein levels but decreases the FUS(R521G) protein, providing a potential biochemical basis for the dendritic spine differences between FUS(WT) and FUS(R521G) mice.


Asunto(s)
Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Mutación Missense , Unión Neuromuscular , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Dendritas/genética , Dendritas/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Ratones , Ratones Transgénicos , Actividad Motora/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Columna Vertebral/metabolismo , Columna Vertebral/patología
16.
Biochemistry ; 54(2): 124-33, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25303020

RESUMEN

To maintain daily cycles, the circadian clock must tightly regulate the rhythms of thousands of mRNAs and proteins with the correct period, phase, and amplitude to ultimately drive the wide range of rhythmic biological processes. Recent genomic approaches have revolutionized our view of circadian gene expression and highlighted the importance of post-transcriptional regulation in driving mRNA rhythmicity. Even after transcripts are made from DNA, subsequent processing and regulatory steps determine when, where, and how much protein will be generated. These post-transcriptional regulatory mechanisms can add flexibility to overall gene expression and alter protein levels rapidly without requiring transcript synthesis and are therefore beneficial for cells; however, the extent to which circadian post-transcriptional mechanisms contribute to rhythmic profiles throughout the genome and the mechanisms involved have not been fully elucidated. In this review, we will summarize how circadian genomics have revealed new insights into rhythmic post-transcriptional regulation in mammals and discuss potential implications of such regulation in controlling many circadian-driven physiologies.


Asunto(s)
Relojes Circadianos , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Proteínas CLOCK/genética , Ritmo Circadiano , Regulación de la Expresión Génica , Genómica , Humanos , Proteínas/genética , Proteómica , ARN Mensajero/genética
17.
J Biol Chem ; 288(49): 35277-86, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24158435

RESUMEN

The Cryptochrome (CRY) proteins are critical components of the mammalian circadian clock and act to rhythmically repress the activity of the transcriptional activators CLOCK and BMAL1 at the heart of the clock mechanism. The CRY proteins are part of a large repressive complex, the components of which are not completely known. Using mass spectroscopy, we identified the catalytic subunit of DNA-dependent protein kinase as a CRY-interacting protein and found that loss or inhibition of this kinase results in circadian rhythms with abnormally long periods. We then identified serine 588 in the C-terminal tail of mouse CRY1 as a potential DNA-PK phosphorylation site but surprisingly found that the phosphomimetic mutation S588D also results in long period rhythms, similar to the loss of DNA-PK. Consistent with this, we found that phosphorylation of this site is increased in cells lacking DNA-PK, suggesting that DNA-PK negatively regulates the phosphorylation of this site most likely through indirect means. Furthermore, we found that phosphorylation of this site increases the stability of the CRY1 protein and prevents FBXL3-mediated degradation. The phosphorylation of this site is robustly rhythmic in mouse liver nuclei, peaking in the middle of the circadian day at a time when CRY1 levels are declining. Therefore, these data suggest a new role for the C-terminal tail of CRY1 in which phosphorylation rhythmically regulates CRY1 stability and contributes to the proper circadian period length.


Asunto(s)
Relojes Circadianos/fisiología , Criptocromos/química , Criptocromos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Relojes Circadianos/genética , Criptocromos/deficiencia , Criptocromos/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación , Estabilidad Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Serina/química
18.
Biochim Biophys Acta ; 1829(6-7): 571-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23274303

RESUMEN

PARN, Nocturnin and Angel are three of the multiple deadenylases that have been described in eukaryotic cells. While each of these enzymes appear to target poly(A) tails for shortening and influence RNA gene expression levels and quality control, the enzymes differ in terms of enzymatic mechanisms, regulation and biological impact. The goal of this review is to provide an in depth biochemical and biological perspective of the PARN, Nocturnin and Angel deadenylases. Understanding the shared and unique roles of these enzymes in cell biology will provide important insights into numerous aspects of the post-transcriptional control of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Asunto(s)
Exorribonucleasas/genética , Proteínas Nucleares/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Exorribonucleasas/química , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/química , Poli A/química , Poli A/genética , Estructura Secundaria de Proteína , Factores de Transcripción/química
19.
Cell Rep ; 43(8): 114523, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39046875

RESUMEN

Extended food consumption during the rest period perturbs the phase relationship between circadian clocks in the periphery and the brain, leading to adverse health effects. Beyond the liver, how metabolic organs respond to a timed hypocaloric diet is largely unexplored. We investigated how feeding schedules impacted circadian gene expression in epididymal white and brown adipose tissue (eWAT and BAT) compared to the liver and hypothalamus. We restricted food to either daytime or nighttime in C57BL/6J male mice, with or without caloric restriction. Unlike the liver and eWAT, rhythmic clock genes in the BAT remained insensitive to feeding time, similar to the hypothalamus. We uncovered an internal split within the BAT in response to conflicting environmental cues, displaying inverted oscillations on a subset of metabolic genes without modifying its local core circadian machinery. Integrating tissue-specific responses on circadian transcriptional networks with metabolic outcomes may help elucidate the mechanism underlying the health burden of eating at unusual times.

20.
J Cell Sci ; 124(Pt 3): 311-20, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21242310

RESUMEN

Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Procesamiento Postranscripcional del ARN/fisiología , Empalme Alternativo/fisiología , Animales , Dinoflagelados , Drosophila , Exosomas/fisiología , Retroalimentación Fisiológica , Regulación de la Expresión Génica , MicroARNs/fisiología , Neurospora , Plantas , Estabilidad del ARN/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA