Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865313

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Asunto(s)
Acidosis Láctica , Alanina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Ácido Pirúvico , Animales , Ratones , Acidosis Láctica/fisiopatología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Eliminación de Gen , Dieta , Mortalidad Prematura
2.
Am J Physiol Cell Physiol ; 325(3): C750-C757, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37575059

RESUMEN

During periods of prolonged fasting/starvation, the liver generates ketones [i.e., ß-hydroxybutyrate (ßOHB)] that primarily serve as alternative substrates for ATP production. Previous studies have demonstrated that elevations in skeletal muscle ketone oxidation contribute to obesity-related hyperglycemia, whereas inhibition of succinyl CoA:3-ketoacid CoA transferase (SCOT), the rate-limiting enzyme of ketone oxidation, can alleviate obesity-related hyperglycemia. As circulating ketone levels are a key determinant of ketone oxidation rates, we tested the hypothesis that increases in circulating ketone levels would worsen glucose homeostasis secondary to increases in muscle ketone oxidation. Accordingly, male C57BL/6J mice were subjected to high-fat diet-induced obesity, whereas their lean counterparts received a standard chow diet. Lean and obese mice were orally administered either a ketone ester (KE) or placebo, followed by a glucose tolerance test. In tandem, we conducted isolated islet perifusion experiments to quantify insulin secretion in response to ketones. We observed that exogenous KE administration robustly increases circulating ßOHB levels, which was associated with an improvement in glucose tolerance only in obese mice. These observations were independent of muscle ketone oxidation, as they were replicated in mice with a skeletal muscle-specific SCOT deficiency. Furthermore, the R-isomer of ßOHB produced greater increases in perifusion insulin levels versus the S-isomer in isolated islets from obese mice. Taken together, acute elevations in circulating ketones promote glucose-lowering in obesity. Given that only the R-isomer of ßOHB is oxidized, further studies are warranted to delineate the precise role of ß-cell ketone oxidation in regulating insulin secretion.NEW & NOTEWORTHY It has been demonstrated that increased skeletal muscle ketone metabolism contributes to obesity-related hyperglycemia. Since increases in ketone supply are key determinants of organ ketone oxidation rates, we determined whether acute elevations in circulating ketones following administration of an oral ketone ester may worsen glucose homeostasis in lean or obese mice. Our work demonstrates the opposite, as acute elevations in circulating ketones improved glucose tolerance in obese mice.


Asunto(s)
Hiperglucemia , Cetonas , Animales , Masculino , Ratones , Ratones Obesos , Cetonas/farmacología , Ratones Endogámicos C57BL , Glucosa/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hiperglucemia/tratamiento farmacológico
3.
Am J Physiol Endocrinol Metab ; 324(5): E425-E436, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989424

RESUMEN

Ketone bodies are an endogenous fuel source generated primarily by the liver to provide alternative energy for extrahepatic tissues during prolonged fasting and exercise. Skeletal muscle is an important site of ketone body oxidation that occurs through a series of reactions requiring the enzyme succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1). We have previously shown that deleting SCOT in the skeletal muscle protects against obesity-induced insulin resistance by increasing pyruvate dehydrogenase (PDH) activity, the rate-limiting enzyme of glucose oxidation. However, it remains unclear whether inhibiting muscle ketone body oxidation causes hypoglycemia and affects fuel metabolism in the absence of obesity. Here, we show that lean mice lacking skeletal muscle SCOT (SCOTSkM-/-) exhibited no overt phenotypic differences in glucose and fat metabolism from their human α-skeletal actin-Cre (HSACre) littermates. Of interest, we found that plasma and muscle branched-chain amino acid (BCAA) levels are elevated in SCOTSkM-/- lean mice compared with their HSACre littermates. Interestingly, this alteration in BCAA catabolism was only seen in SCOTSkM-/- mice under low-fat feeding and associated with decreased expression of mitochondrial branched-chain aminotransferases (BCATm/Bcat2), the first enzyme in BCAA catabolic pathway. Loss- and gain-of-function studies in C2C12 myotubes demonstrated that suppressing SCOT markedly diminished BCATm expression, whereas overexpressing SCOT resulted in an opposite effect without influencing BCAA oxidation enzymes. Furthermore, SCOT overexpression in C2C12 myotubes significantly increased luciferase activity driven by a Bcat2 promoter construct. Together, our findings indicate that SCOT regulates the expression of the Bcat2 gene, which, through the abundance of its product BCATm, may influence circulating BCAA concentrations.NEW & NOTEWORTHY Most studies investigated ketone body metabolism under pathological conditions, whereas the role of ketone body metabolism in regulating normal physiology has been relatively understudied. To address this gap, we used lean mice lacking muscle ketone body oxidation enzyme SCOT. Our work demonstrates that deleting muscle SCOT has no impact on glucose and fat metabolism in lean mice, but it disrupts muscle BCAA catabolism and causes an accumulation of BCAAs by altering BCATm.


Asunto(s)
Cuerpos Cetónicos , Cetonas , Animales , Ratones , Humanos , Cuerpos Cetónicos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Obesidad/metabolismo
4.
Am J Physiol Endocrinol Metab ; 323(1): E8-E20, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575232

RESUMEN

High-fat and very low-carbohydrate based ketogenic diets have gained considerable popularity as a nonpharmacological strategy for obesity, due to their potential to enhance weight loss and improve glucose homeostasis. However, the effectiveness of a ketogenic diet toward metabolic health is equivocal. To better understand the impact of ketogenic diets in obesity, male and female mice were fed a 60% cocoa butter-based high-fat diet for 16-wk to induce obesity, following which mice were transitioned to either an 85% cocoa butter fat-based ketogenic diet, a 10% cocoa butter fat-based low-fat diet, or maintained on a high-fat diet for an additional 8-wk. All experimental diets were matched for sucrose and protein content and contained an identical micronutrient profile, with complex carbohydrates being the primary carbohydrate source in the low-fat diet. The transition to a ketogenic diet was ineffective at promoting significant body fat loss and improving glucose homeostasis in obese male and female mice. Alternatively, obese male and female mice transitioned to a low-fat and high-complex carbohydrate diet exhibited beneficial body composition changes and improved glucose tolerance that may, in part, be attributed to a mild decrease in food intake and a mild increase in energy expenditure. Our findings support the consumption of a diet low in saturated fat and rich in complex carbohydrates as a potential dietary intervention for the treatment of obesity and obesity-induced impairments in glycemia. Furthermore, our results suggest that careful consideration should be taken when considering a ketogenic diet as a nonpharmacological strategy for obesity.NEW & NOTEWORTHY It has been demonstrated that ketogenic diets may be a nutritional strategy for alleviating hyperglycemia and promoting weight loss in obesity. However, there are a number of inconsistencies with many of these studies, especially with regard to the macronutrient and micronutrient compositions of the diets being compared. Our work demonstrates that a ketogenic diet that is both micronutrient-matched and isoproteic with its comparator diets fails to improve glycemia or promote weight loss in obese mice.


Asunto(s)
Dieta Cetogénica , Animales , Glucemia/metabolismo , Dieta con Restricción de Grasas , Carbohidratos de la Dieta/metabolismo , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/metabolismo , Femenino , Homeostasis , Masculino , Ratones , Ratones Obesos , Micronutrientes , Obesidad/metabolismo , Pérdida de Peso
5.
Can J Physiol Pharmacol ; 100(5): 393-401, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34851748

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess fat in the liver in the absence of alcohol and increases one's risk for both diabetes and cardiovascular disease (e.g., angina). We have shown that the second-line anti-anginal therapy, ranolazine, mitigates obesity-induced NAFLD, and our aim was to determine whether these actions of ranolazine also extend to NAFLD associated with type 2 diabetes (T2D). Eight-week-old male C57BL/6J mice were fed either a low-fat diet or a high-fat diet for 15 weeks, with a single dose of streptozotocin (STZ; 75 mg/kg) administered in the high-fat diet-fed mice at 4 weeks to induce experimental T2D. Mice were treated with either vehicle control or ranolazine during the final 7 weeks (50 mg/kg once daily). We assessed glycemia via monitoring glucose tolerance, insulin tolerance, and pyruvate tolerance, whereas hepatic steatosis was assessed via quantifying triacylglycerol content. We observed that ranolazine did not improve glycemia in mice with experimental T2D, while also having no impact on hepatic triacylglycerol content. Therefore, the salutary actions of ranolazine against NAFLD may be limited to obese individuals but not those who are obese with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Glucemia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Ranolazina/farmacología , Ranolazina/uso terapéutico , Estreptozocina , Triglicéridos
6.
Am J Physiol Heart Circ Physiol ; 320(6): H2255-H2269, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929899

RESUMEN

Heart failure presents as the leading cause of infant mortality in individuals with Barth syndrome (BTHS), a rare genetic disorder due to mutations in the tafazzin (TAZ) gene affecting mitochondrial structure and function. Investigations into the perturbed bioenergetics in the BTHS heart remain limited. Hence, our objective was to identify the potential alterations in myocardial energy metabolism and molecular underpinnings that may contribute to the early cardiomyopathy and heart failure development in BTHS. Cardiac function and myocardial energy metabolism were assessed via ultrasound echocardiography and isolated working heart perfusions, respectively, in a mouse model of BTHS [doxycycline-inducible Taz knockdown (TazKD) mice]. In addition, we also performed mRNA/protein expression profiling for key regulators of energy metabolism in hearts from TazKD mice and their wild-type (WT) littermates. TazKD mice developed hypertrophic cardiomyopathy as evidenced by increased left ventricular anterior and posterior wall thickness, as well as increased cardiac myocyte cross-sectional area, though no functional impairments were observed. Glucose oxidation rates were markedly reduced in isolated working hearts from TazKD mice compared with their WT littermates in the presence of insulin, which was associated with decreased pyruvate dehydrogenase activity. Conversely, myocardial fatty acid oxidation rates were elevated in TazKD mice, whereas no differences in glycolytic flux or ketone body oxidation rates were observed. Our findings demonstrate that myocardial glucose oxidation is impaired before the development of overt cardiac dysfunction in TazKD mice, and may thus represent a pharmacological target for mitigating the development of cardiomyopathy in BTHS.NEW & NOTEWORTHY Barth syndrome (BTHS) is a rare genetic disorder due to mutations in tafazzin that is frequently associated with infantile-onset cardiomyopathy and subsequent heart failure. Although previous studies have provided evidence of perturbed myocardial energy metabolism in BTHS, actual measurements of flux are lacking. We now report a complete energy metabolism profile that quantifies flux in isolated working hearts from a murine model of BTHS, demonstrating that BTHS is associated with a reduction in glucose oxidation.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Aciltransferasas/genética , Animales , Síndrome de Barth/genética , Síndrome de Barth/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Metabolismo Energético/genética , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Insulina/metabolismo , Preparación de Corazón Aislado , Ratones , Oxidación-Reducción , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
7.
Exp Physiol ; 105(2): 270-281, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802553

RESUMEN

NEW FINDINGS: What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l-1 ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.


Asunto(s)
Glucemia/efectos de los fármacos , Citrulina/farmacología , Tolerancia al Ejercicio/efectos de los fármacos , Obesidad/tratamiento farmacológico , Animales , Glucemia/metabolismo , Citrulina/uso terapéutico , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Tolerancia al Ejercicio/fisiología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo
8.
Cardiovasc Res ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691671

RESUMEN

AIMS: Cardiac energy metabolism is perturbed in ischemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS: C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending (LAD) coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and ß-hydroxybutyrate (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. RESULTS: Mice with heart failure exhibited a 56% drop in ejection fraction which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet no increase in overall cardiac energy production was observed, and instead there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSIONS: We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischemic heart and a decrease in insulin-stimulated glucose oxidation.

9.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860519

RESUMEN

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Liraglutida , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Masculino , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones Noqueados , Complejo Piruvato Deshidrogenasa/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Ratones Endogámicos C57BL , Dieta Alta en Grasa , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo
10.
Nat Commun ; 15(1): 4632, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951500

RESUMEN

ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.


Asunto(s)
Cardiopatías Congénitas , Corazón , Ratones Noqueados , Cresta Neural , Proteínas Represoras , Animales , Femenino , Ratones , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Miocardio/metabolismo , Cresta Neural/metabolismo , Cresta Neural/embriología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal
11.
Cell Rep ; 43(8): 114573, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39093701

RESUMEN

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.

12.
J Lipid Atheroscler ; 12(1): 47-57, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36761067

RESUMEN

Diabetic cardiomyopathy was originally described as the presence of ventricular dysfunction in the absence of coronary artery disease and/or hypertension. It is characterized by diastolic dysfunction and is more prevalent in people with diabetes than originally realized, leading to the suggestion in the field that it simply be referred to as diabetic heart disease. While there are currently no approved therapies for diabetic heart disease, a multitude of studies clearly demonstrate that it is characterized by several disturbances in myocardial energy metabolism. One of the most prominent changes in myocardial energy metabolism in diabetes is a robust impairment in glucose oxidation. Herein we will describe the mechanisms responsible for the diabetes-induced decline in myocardial glucose oxidation, and the pharmacological approaches that have been pursued to correct this metabolic disorder. With surmounting evidence that stimulating myocardial glucose oxidation can alleviate diastolic dysfunction and other pathologies associated with diabetic heart disease, this may also represent a novel strategy for decreasing the prevalence of heart failure with preserved ejection fraction in the diabetic population.

13.
Basic Clin Pharmacol Toxicol ; 133(2): 194-201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269153

RESUMEN

AIMS: Recent studies have demonstrated that stimulating pyruvate dehydrogenase (PDH, gene Pdha1), the rate-limiting enzyme of glucose oxidation, can reverse obesity-induced non-alcoholic fatty liver disease (NAFLD), which can be achieved via treatment with the antianginal ranolazine. Accordingly, our aim was to determine whether ranolazine's ability to mitigate obesity-induced NAFLD and hyperglycaemia requires increases in hepatic PDH activity. METHODS: We generated liver-specific PDH-deficient (Pdha1Liver-/- ) mice, which were provided a high-fat diet for 12 weeks to induce obesity. Pdha1Liver-/- mice and their albumin-Cre (AlbCre ) littermates were randomized to treatment with either vehicle control or ranolazine (50 mg/kg) once daily via oral gavage during the final 5 weeks, following which we assessed glucose and pyruvate tolerance. RESULTS: Pdha1Liver-/- mice exhibited no overt phenotypic differences (e.g. adiposity, glucose tolerance) when compared to their AlbCre littermates. Of interest, ranolazine treatment improved glucose tolerance and mildly reduced hepatic triacylglycerol content in obese AlbCre mice but not in obese Pdha1Liver-/- mice. The latter was independent of changes in hepatic mRNA expression of genes involved in regulating lipogenesis. CONCLUSIONS: Liver-specific PDH deficiency is insufficient to promote an NAFLD phenotype. Nonetheless, hepatic PDH activity partially contributes to how the antianginal ranolazine improves glucose tolerance and alleviates hepatic steatosis in obesity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/inducido químicamente , Oxidorreductasas/metabolismo , Ranolazina/efectos adversos , Ranolazina/metabolismo
14.
Diabetes ; 72(1): 126-134, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256885

RESUMEN

Despite significant progress in understanding the pathogenesis of type 2 diabetes (T2D), the condition remains difficult to manage. Hence, new therapeutic options targeting unique mechanisms of action are required. We have previously observed that elevated skeletal muscle succinyl CoA:3-ketoacid CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone oxidation, contributes to the hyperglycemia characterizing obesity and T2D. Moreover, we identified that the typical antipsychotic agent pimozide is a SCOT inhibitor that can alleviate obesity-induced hyperglycemia. We now extend those observations here, using computer-assisted in silico modeling and in vivo pharmacology studies that highlight SCOT as a noncanonical target shared among the diphenylbutylpiperidine (DPBP) drug class, which includes penfluridol and fluspirilene. All three DPBPs tested (pimozide, penfluridol, and fluspirilene) improved glycemia in obese mice. While the canonical target of the DPBPs is the dopamine 2 receptor, studies in obese mice demonstrated that acute or chronic treatment with a structurally unrelated antipsychotic dopamine 2 receptor antagonist, lurasidone, was devoid of glucose-lowering actions. We further observed that the DPBPs improved glycemia in a SCOT-dependent manner in skeletal muscle, suggesting that this older class of antipsychotic agents may have utility in being repurposed for the treatment of T2D.


Asunto(s)
Antipsicóticos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Coenzima A Transferasas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dopamina , Fluspirileno/farmacología , Hiperglucemia/tratamiento farmacológico , Ratones Obesos , Penfluridol/farmacología , Pimozida/farmacología , Receptores Dopaminérgicos/metabolismo
15.
Front Cardiovasc Med ; 9: 981972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035919

RESUMEN

Barth Syndrome (BTHS) is a rare X-linked mitochondrial disorder due to mutations in the gene TAFAZZIN, which leads to immature cardiolipin (CL) remodeling and is characterized by the development of cardiomyopathy. The immature CL remodeling in BTHS results in electron transport chain respiratory defects and destabilization of supercomplexes, thereby impairing ATP production. Thus, BTHS-related cardiomyopathy appears to share metabolic characteristics of the failing heart being an "engine out of fuel." As CL associates with numerous mitochondrial enzymes involved in ATP production, BTHS is also characterized by several defects in intermediary energy metabolism. Herein we will describe the primary disturbances in intermediary energy metabolism relating to the heart's major fuel sources, fatty acids, carbohydrates, ketones, and amino acids. In addition, we will interrogate whether these disturbances represent potential metabolic targets for alleviating BTHS-related cardiomyopathy.

16.
Diabetes ; 71(2): 173-183, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050311

RESUMEN

As the worldwide prevalence of diabetes and obesity continues to rise, so does the risk of debilitating cardiovascular complications. Given the significant association between diabetes and cardiovascular risk, the actions of glucose-lowering therapies within the cardiovascular system must be clearly defined. Incretin hormones, including GLP-1 (glucagon-like peptide 1) and GIP (glucose-dependent insulinotropic polypeptide), are gut hormones secreted in response to nutrient intake that maintain glycemic control by regulating insulin and glucagon release. GLP-1 receptor agonists (GLP-1Ras) and dipeptidyl peptidase 4 inhibitors (DPP-4is) represent two drug classes used for the treatment of type 2 diabetes mellitus (T2DM) that improve glucose regulation through stimulating the actions of gut-derived incretin hormones or inhibiting their degradation, respectively. Despite both classes acting to potentiate the incretin response, the potential cardioprotective benefits afforded by GLP-1Ras have not been recapitulated in cardiovascular outcome trials (CVOTs) evaluating DPP-4is. This review provides insights through discussion of clinical and preclinical studies to illuminate the physiological mechanisms that may underlie and reconcile observations from GLP-1Ra and DPP-4i CVOTs. Furthermore, critical knowledge gaps and areas for further investigation will be emphasized to guide future studies and, ultimately, facilitate improved clinical management of cardiovascular disease in T2DM.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Incretinas/farmacología , Animales , Enfermedades Cardiovasculares/prevención & control , Ensayos Clínicos como Asunto/estadística & datos numéricos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/prevención & control , Quimioterapia Combinada , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Incretinas/administración & dosificación , Resultado del Tratamiento
17.
Front Cardiovasc Med ; 9: 997352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211560

RESUMEN

Barth syndrome (BTHS) is a rare genetic disorder due to mutations in the TAFAZZIN gene, leading to impaired maturation of cardiolipin and thereby adversely affecting mitochondrial function and energy metabolism, often resulting in cardiomyopathy. In a murine model of BTHS involving short-hairpin RNA mediated knockdown of Tafazzin (TazKD mice), myocardial glucose oxidation rates were markedly reduced, likely secondary to an impairment in the activity of pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. Furthermore, TazKD mice exhibited cardiac hypertrophy with minimal cardiac dysfunction. Because the stimulation of myocardial glucose oxidation has been shown to alleviate diabetic cardiomyopathy and heart failure, we hypothesized that stimulating PDH activity would alleviate the cardiac hypertrophy present in TazKD mice. In order to address our hypothesis, 6-week-old male TazKD mice and their wild-type (WT) littermates were treated with dichloroacetate (DCA; 70 mM in the drinking water), which stimulates PDH activity via inhibiting PDH kinase to prevent inhibitory phosphorylation of PDH. We utilized ultrasound echocardiography to assess cardiac function and left ventricular wall structure in all mice prior to and following 6-weeks of treatment. Consistent with systemic activation of PDH and glucose oxidation, DCA treatment improved glycemia in both TazKD mice and their WT littermates, and decreased PDH phosphorylation equivalently at all 3 of its inhibitory sites (serine 293/300/232). However, DCA treatment had no impact on left ventricular structure, or systolic and diastolic function in TazKD mice. Therefore, it is unlikely that stimulating glucose oxidation is a viable target to improve BTHS-related cardiomyopathy.

18.
Cell Rep ; 35(1): 108935, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826891

RESUMEN

Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Diástole/fisiología , Proteína Forkhead Box O1/metabolismo , Miocardio/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Fibrosis , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/deficiencia , Glucosa/metabolismo , Homeostasis , Lípidos/toxicidad , Masculino , Ratones Endogámicos C57BL
19.
Can J Cardiol ; 37(1): 140-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32640211

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) increases risk for cardiovascular disease. Of interest, liraglutide, a therapy for T2D that activates the glucagon-like peptide-1 receptor to augment insulin secretion, reduces cardiovascular-related death in people with T2D, though it remains unknown how liraglutide produces these actions. Notably, the glucagon-like peptide-1 receptor is not expressed in ventricular cardiac myocytes, making it likely that ventricular myocardium-independent actions are involved. We hypothesized that augmented insulin secretion may explain how liraglutide indirectly mediates cardioprotection, which thereby increases myocardial glucose oxidation. METHODS: C57BL/6J male mice were fed either a low-fat diet (lean) or were subjected to experimental T2D and treated with either saline or liraglutide 3× over a 24-hour period. Mice were subsequently euthanized and had their hearts perfused in the working mode to assess energy metabolism. A separate cohort of mice with T2D were treated with either vehicle control or liraglutide for 2 weeks for the assessment of cardiac function via ultrasound echocardiography. RESULTS: Treatment of lean mice with liraglutide increased myocardial glucose oxidation without affecting glycolysis. Conversely, direct treatment of the isolated working heart with liraglutide had no effect on glucose oxidation. These findings were recapitulated in mice with T2D and associated with increased circulating insulin levels. Furthermore, liraglutide treatment alleviated diastolic dysfunction in mice with T2D, which was associated with enhanced pyruvate dehydrogenase activity, the rate-limiting enzyme of glucose oxidation. CONCLUSIONS: Our data demonstrate that liraglutide augments myocardial glucose oxidation via indirect mechanisms, which may contribute to how liraglutide improves cardiovascular outcomes in people with T2D.


Asunto(s)
Cardiomiopatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Liraglutida/farmacología , Miocardio/metabolismo , Oxidación-Reducción/efectos de los fármacos , Animales , Diabetes Mellitus Experimental , Diástole/efectos de los fármacos , Ecocardiografía , Metabolismo Energético , Receptor del Péptido 1 Similar al Glucagón/agonistas , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , Fosforilación , Complejo Piruvato Deshidrogenasa/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
20.
Front Physiol ; 11: 570421, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041869

RESUMEN

As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart's ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA