Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731563

RESUMEN

The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Inmunoterapia/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico
2.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163777

RESUMEN

Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Nanomedicina Teranóstica , Microambiente Tumoral/efectos de los fármacos
3.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628518

RESUMEN

The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study's purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO's effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO's implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO's contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.


Asunto(s)
Ferroptosis , Hemo Oxigenasa (Desciclizante) , Neoplasias de la Mama Triple Negativas , Glutatión , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Peróxidos Lipídicos , Especies Reactivas de Oxígeno/metabolismo
4.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364085

RESUMEN

Silver nanoparticles (AgNPs) are widely used commercially due to their antimicrobial effects. Little is known about the effect of AgNPs on neural transmission and pain response. The aim of this study was to assess the anti-nociceptive activity of AgNPs. AgNPs were prepared at 16 ug/mL, white albino rats were injected with various doses of AgNPs, and challenged using a hot-plate test and paw withdrawal latency (PWL) was measured. The chronic constriction injury (CCI) model was utilized to evaluate the pedal withdrawal reflex and tail withdrawal reflex. An electrophysiological study was conducted utilizing colon longitudinal muscle strips. AgNPs increased the latency of PWL in a dose-dependent matter over the duration of 6 h. The paw withdrawal threshold in animals with CCI significantly increased after AgNPs administration. In isolated colon longitudinal muscle strips, AgNPs significantly reduced the colonic migrating motor complexes (MMCs) and contraction. This action was completely reversed after removing the AgNPs and adding acetylcholine to the preparation. In this study, AgNPs showed significant anti-nociception properties. To our knowledge, this is the first report to describe this pharmacological action of AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Plata/farmacología , Ratas
5.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630697

RESUMEN

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Enfermedad Crónica , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Molecules ; 26(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207832

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA-TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.


Asunto(s)
Antineoplásicos/farmacología , Alcaloides Indólicos/farmacología , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Alcaloides Indólicos/química , Maleatos/química , Maleatos/farmacología , Ratones , Ratones Endogámicos BALB C , Micelas , Poliestirenos/química , Poliestirenos/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
7.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333908

RESUMEN

Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, ß-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2-3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.


Asunto(s)
Dimetilfumarato/química , Dimetilfumarato/farmacología , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Dimetilfumarato/análogos & derivados , Dimetilfumarato/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168943

RESUMEN

In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias de la Mama/enzimología , Hemo-Oxigenasa 1/antagonistas & inhibidores , Imidazoles/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/química , Imidazoles/farmacología , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular
9.
Molecules ; 23(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783634

RESUMEN

In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.


Asunto(s)
Antineoplásicos/química , Hemo-Oxigenasa 1/antagonistas & inhibidores , Imidazoles/química , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/farmacología , Micelas , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie
10.
Cancer Sci ; 106(3): 270-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25529761

RESUMEN

Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene-maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer-drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Portadores de Fármacos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Maleatos/farmacología , Poliestirenos/farmacología , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/efectos adversos , Portadores de Fármacos/síntesis química , Células HeLa , Humanos , Neoplasias Pulmonares/secundario , Masculino , Maleatos/efectos adversos , Maleatos/síntesis química , Ratones , Ratones Endogámicos BALB C , Micelas , Proteínas Mitocondriales , Poliestirenos/efectos adversos , Poliestirenos/síntesis química , Ratas , Ratas Sprague-Dawley
11.
J Drug Target ; 32(4): 433-443, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385752

RESUMEN

Traditional treatments for head and neck squamous cell carcinoma (HNSCC) such as surgery, radiation therapy, and chemotherapy, often have severe side effects. Local delivery of chemotherapeutic agents can be a promising approach to minimise systemic toxicity and improve efficacy. Lauric acid (LA), was explored as a novel injectable thermosensitive drug reservoir as a depot for sustained release of anticancer drugs to treat HNSCC. LA was characterised in terms of melting temperature and gelation time. The efficacy of LA-based drug formulations was tested in vitro in a HNSCC cell line and in vivo in a mouse model of HNSCC. LA was modified to have a melting point of 38.5 °C and a gelation time of 40 s at 37.5 °C, rendering it suitable for injection at body temperature. LA- based doxorubicin (DOXO) formulation showed slow release with a maximum of 18% release after 3 days. The in vitro study showed that LA enhanced the cytotoxic effect of DOXO. LA combined with DOXO prevented tumour progression and LA alone significantly reduced the original tumour volume compared to the untreated control group. These findings confirmed that LA can function as practical carrier for the local delivery of chemotherapeutics and provides a safe and simple strategy for the delivery of hydrophobic anticancer drugs and warrant further testing in clinical trials.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Ácidos Láuricos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
12.
Int J Pharm ; 654: 123935, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38395319

RESUMEN

Carvedilol (CV), a ß-blocker essential for treating cardiovascular diseases, faces bioavailability challenges due to poor water solubility and first-pass metabolism. This study developed and optimized chitosan (CS)-coated niosomes loaded with CV (CS/CV-NS) for intranasal (IN) delivery, aiming to enhance systemic bioavailability. Utilizing a Quality-by-Design (QbD) approach, the study investigated the effects of formulation variables, such as surfactant type, surfactant-to-cholesterol (CHOL) ratio, and CS concentration, on CS/CV-NS properties. The focus was to optimize specific characteristics including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and mucin binding efficiency (MBE%). The optimal formulation (Opt CS/CV-NS), achieved with a surfactant: CHOL ratio of 0.918 and a CS concentration of 0.062 g/100 mL, using Span 60 as the surfactant, exhibited a PS of 305 nm, PDI of 0.36, ZP of + 33 mV, EE% of 63 %, and MBE% of 57 %. Opt CS/CV-NS was characterized for its morphological and physicochemical properties, evaluated for stability under different storage conditions, and assessed for in vitro drug release profile. Opt CS/CV-NS demonstrated a 1.7-fold and 4.8-fold increase in in vitro CV release after 24 h, compared to uncoated CV-loaded niosomes (Opt CV-NS) and free CV, respectively. In vivo pharmacokinetic (PK) study, using a rat model, demonstrated that Opt CS/CV-NS achieved faster Tmax and higher Cmax compared to free CV suspension indicating enhanced absorption rate. Additionally, Opt CV-NS showed a 1.68-fold higher bioavailability compared to the control. These results underscore the potential of niosomal formulations in enhancing IN delivery of CV, offering an effective strategy for improving drug bioavailability and therapeutic efficacy.


Asunto(s)
Liposomas , Tensoactivos , Ratas , Animales , Liposomas/química , Carvedilol , Administración Intranasal , Liberación de Fármacos , Tamaño de la Partícula , Portadores de Fármacos/química , Disponibilidad Biológica
13.
ACS Med Chem Lett ; 15(5): 706-713, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38746881

RESUMEN

Herein, we describe the design, synthesis, and in vitro biological evaluation of HO-1 inducers endowed with cytotoxic effects mediated by ferroptosis activation. Using the natural HO-1 inducer caffeic acid phenethyl ester (CAPE) as a chemical scaffold, new derivatives were synthesized by performing modifications in the cathecol moiety and in the phenethyl ester aromatic ring. Biological assays aimed at evaluating an imbalanced activity of ferroptosis key players identified that 2-(1H-indol-3-yl)ethyl cinnamate (compound 24) possesses improved anticancer activity toward the MDA-MB 231 triple negative breast cancer cell line when compared to CAPE. Increased ROS and LOOH levels, reduced GSH levels, imbalanced mitochondrial activity, and restored cell viability after ferrostatin-1 treatment suggested a ferroptotic mechanism of action, which did not involve GPX4 inhibition. Compound 24 represents an intriguing hit compound useful for the identification of novel ferroptosis inducers.

14.
Mol Pharm ; 10(3): 988-98, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23286733

RESUMEN

Development of carrier systems to improve oral bioavailability and target drugs to specific sites continues to be an unmet need. The goal of this study was to evaluate the potential of anionic generation (G) 6.5 poly(amido amine) (PAMAM) dendrimers in oral drug delivery by assessing their in vivo oral translocation. G6.5-COOH dendrimers were characterized for their physiochemical characteristics and acute oral toxicity was assessed in CD-1 mice. The dendrimers were labeled with (125)I and their stability evaluated. Oral bioavailability was assessed in the same mouse model. Investigation of the radioactivity profile in plasma revealed presence of both large and small molecular weight compounds. Detailed area under the curve analysis suggests an effective 9.4% bioavailability of radiolabeled marker associated with G6.5-COOH. Results reported here suggest the potential of dendrimers in permeating gastrointestinal barriers in vivo.


Asunto(s)
Dendrímeros/administración & dosificación , Dendrímeros/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Dendrímeros/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Femenino , Intestinos/química , Ratones , Estómago/química
15.
J Colloid Interface Sci ; 630(Pt A): 698-713, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274405

RESUMEN

Colorectal cancer (CRC) accounts for approximately 10% of all new cancer cases worldwide with significant morbidity and mortality. The current imaging techniques are lacking diagnostic precision while traditional chemotherapeutic strategies are limited by their adverse side effects and poor response in advanced stages. Targeted nanoparticles (NPs) can specifically bind to surface antigens on cancer cells and provide effective delivery of diagnostic and chemotherapeutic agent. Placenta-specific protein 1 (PLAC-1) is overexpressed in CRC and can be used as a target for detection and treatment of the disease. The aim of this work was to develop a targeted nanotheranostic agent for early diagnosis and inhibition of the malignant progression and metastasis of CRC. Graphene oxide quantum dots (QD) were covalently labeled with a peptide (GILGFVFTL) having high affinity to PLAC-1. The covalent coupling between the QD and the peptide was confirmed using a series of physicochemical and morphological characterization techniques. Confocal microscopy was used to evaluate the uptake of QD and QD-P in HCT-29, HT-116 and LS-180 CRC cell lines. Selective targeting of antigen PLAC-1 overexpressed on HT-29 and HCT-116 cells was measured by immunofluorescence. Cell proliferation, cell invasion and extent of PLAC-1 expression in CRC cells after treatment with QD and QD-P were determined. The prepared QD-P showed a significant increase in targeting and specific uptake in cells expressing the antigen PLAC-1 compared to non-functionalized QD. Treatment with QD-P also increased the cell cytotoxicity, reduced the invasiveness of HT-29 and HCT-116 cells by 38% and 62%, respectively, and downregulated the expression of PLAC-1 by 53% and 33%, respectively. These results highlight the potential use of QD-P as a theranostic agent for the detection and treatment of CRC cells expressing the antigen PLAC-1.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Medicina de Precisión , Péptidos/química , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico
16.
RSC Adv ; 13(44): 31059-31066, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37881762

RESUMEN

Renewed interest towards natural substances has been pushed by the widespread diffusion of antibiotic resistance. Curcumin I is the most active and effective constituent of curcuminoids extracted from Curcuma longa and, among other beneficial effects, attracted attention for its antimicrobial potential. Since the poor pharmacokinetic profile hinders its efficient utilization, in the present paper, we report encapsulation of curcumin I in poly(styrene-co-maleic acid) (SMA-CUR) providing a nanomicellar system with improved aqueous solubility and bioavailability. SMA-CUR was characterized by means of size, zeta potential, polydispersity index, atomic force microscopy (AFM), drug release studies, spectroscopic properties and stability. SMA-CUR nanoformulation displayed exciting antimicrobial properties compared to free curcumin I towards Gram-positive and Gram-negative clinical isolates.

17.
J Pers Med ; 12(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35629095

RESUMEN

Both personalized medicine and nanomedicine are new to medical practice. Nanomedicine is an application of the advances of nanotechnology in medicine and is being integrated into diagnostic and therapeutic tools to manage an array of medical conditions. On the other hand, personalized medicine, which is also referred to as precision medicine, is a novel concept that aims to individualize/customize therapeutic management based on the personal attributes of the patient to overcome blanket treatment that is only efficient in a subset of patients, leaving others with either ineffective treatment or treatment that results in significant toxicity. Novel nanomedicines have been employed in the treatment of several diseases, which can be adapted to each patient-specific case according to their genetic profiles. In this review, we discuss both areas and the intersection between the two emerging scientific domains. The review focuses on the current situation in personalized medicine, the advantages that can be offered by nanomedicine to personalized medicine, and the application of nanoconstructs in the diagnosis of genetic variability that can identify the right drug for the right patient. Finally, we touch upon the challenges in both fields towards the translation of nano-personalized medicine.

18.
J Drug Target ; 30(4): 413-429, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34854327

RESUMEN

COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Humanos , SARS-CoV-2/efectos de los fármacos
19.
Curr Drug Targets ; 23(10): 978-1001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657283

RESUMEN

Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disorder, manifested by the loss of memory and cognitive abilities, behavioral disturbance and progressive impairment of activities of daily life. The sharp rise in the number of AD patients has brought it within the top eight health issues in the world. It is associated with the distribution of misfolded aggregates of protein within the brain. However, Alois Alzheimer initially mentioned that the reduction in brain volume in AD might be associated with the "deposition of a special substance in the cortex". The resulting plaque found in extracellular space in the AD brain and hippocampus region, known as senile plaques, is the characteristic feature underlying Alzheimer's pathology, where the role of amyloid- ß (Aß) peptide formation from proteolytic cleavage of amyloid precursor protein (APP) by secretase enzyme is eminent. Therefore, this review has highlighted the molecular pathophysiology of AD with a variety of available diagnostic and treatment strategies for the management of the disease, with a focus on the advancement toward clinical research to provide new effective and safe tool in the diagnosis, treatment or management of AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Progresión de la Enfermedad , Humanos , Placa Amiloide
20.
Int J Pharm ; 621: 121786, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500689

RESUMEN

Local anesthetics are commonly used for the management of intraoperative and postoperative acute and chronic pain caused by small invasive procedures. However, their short half-life and duration of action limit their clinical benefits. In this study, we proposed the incorporation of graphene oxide (GO) nanosheets to chitosan (CS)/ß-glycerophosphate (GP) thermosensitive hydrogel system to form an injectable nanocomposite hydrogel (NCH) with improved mechanical properties and better control over the release of bupivacaine hydrochloride (BH). The prepared NCHs were characterized for their gelation time, porosity, swelling ratio, injectability, mechanical strength and in vitro drug release. In vivo, the efficacy of the prepared NCH containing 0.5 % w/v BH was evaluated using a thermal nociceptive assay in a rat model. The incorporation of GO significantly enhanced the physicochemical and mechanical properties of the hydrogel scaffolds in a concentration-dependent manner. Inclusion of 0.1% w/v GO resulted in 84% reduction in gelation time and 16% and 40% decrease in the porosity and swelling ratio of the NCHs, respectively. The mechanical strength of the CS/GP hydrogel scaffolds was also significantly improved in presence of GO. BH was slowly released from the NCHs containing 0.1% w/v GO and resulted in a 55% and 86.43% drug release after 6 and 24 h, respectively. In vivo studies showed that BH-loaded NCH significantly prolonged the local anesthetic effect and resulted in a 6.5-fold increase in blocking the pain sensory reflex compared to BH solution. These results indicate that the incorporation of GO significantly improved the physical and mechanical properties of CS/GP thermosensitive hydrogels and successfully sustained the effect of local anesthesia for more effective pain management.


Asunto(s)
Quitosano , Animales , Bupivacaína , Quitosano/química , Grafito , Hidrogeles/química , Nanogeles , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA