Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293091

RESUMEN

Research resources like transgenic animals and antibodies are the workhorses of biomedicine, enabling investigators to relatively easily study specific disease conditions. As key biological resources, transgenic animals and antibodies are often validated, maintained, and distributed from university based stock centers. As these centers heavily rely largely on grant funding, it is critical that they are cited by investigators so that usage can be tracked. However, unlike systems for tracking the impact of papers, the conventions and systems for tracking key resource usage and impact lag behind. Previous studies have shown that about 50% of the resources are not findable, making the studies they are supporting irreproducible, but also makes tracking resources difficult. The RRID project is filling this gap by working with journals and resource providers to improve citation practices and to track the usage of these key resources. Here, we reviewed 10 years of citation practices for five university based stock centers, characterizing each reference into two broad categories: findable (authors could use the RRID, stock number, or full name) and not findable (authors could use a nickname or a common name that is not unique to the resource). The data revealed that when stock centers asked their communities to cite resources by RRID, in addition to helping stock centers more easily track resource usage by increasing the number of RRID papers, authors shifted from citing resources predominantly by nickname (~50% of the time) to citing them by one of the findable categories (~85%) in a matter of several years. In the case of one stock center, the MMRRC, the improvement in findability is also associated with improvements in the adherence to NIH rigor criteria, as determined by a significant increase in the Rigor and Transparency Index for studies using MMRRC mice. From this data, it was not possible to determine whether outreach to authors or changes to stock center websites drove better citation practices, but findability of research resources and rigor adherence was improved.

2.
Neuroinformatics ; 20(1): 203-219, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347243

RESUMEN

The past decade has seen accelerating movement from data protectionism in publishing toward open data sharing to improve reproducibility and translation of biomedical research. Developing data sharing infrastructures to meet these new demands remains a challenge. One model for data sharing involves simply attaching data, irrespective of its type, to publisher websites or general use repositories. However, some argue this creates a 'data dump' that does not promote the goals of making data Findable, Accessible, Interoperable and Reusable (FAIR). Specialized data sharing communities offer an alternative model where data are curated by domain experts to make it both open and FAIR. We report on our experiences developing one such data-sharing ecosystem focusing on 'long-tail' preclinical data, the Open Data Commons for Spinal Cord Injury (odc-sci.org). ODC-SCI was developed with community-based agile design requirements directly pulled from a series of workshops with multiple stakeholders (researchers, consumers, non-profit funders, governmental agencies, journals, and industry members). ODC-SCI focuses on heterogeneous tabular data collected by preclinical researchers including bio-behaviour, histopathology findings and molecular endpoints. This has led to an example of a specialized neurocommons that is well-embraced by the community it aims to serve. In the present paper, we provide a review of the community-based design template and describe the adoption by the community including a high-level review of current data assets, publicly released datasets, and web analytics. Although odc-sci.org is in its late beta stage of development, it represents a successful example of a specialized data commons that may serve as a model for other fields.


Asunto(s)
Investigación Biomédica , Traumatismos de la Médula Espinal , Ecosistema , Humanos , Difusión de la Información , Reproducibilidad de los Resultados , Traumatismos de la Médula Espinal/terapia
3.
Neuroinformatics ; 14(2): 169-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26589523

RESUMEN

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example a model organism database, for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( http://scicrunch.org/resources ). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40 with RRIDs appearing in 62 different journals to date. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources.


Asunto(s)
Cultura , Conjuntos de Datos como Asunto , Recursos en Salud/estadística & datos numéricos , Edición , Humanos , Neurociencias , Proyectos Piloto , PubMed/estadística & datos numéricos , Edición/normas
4.
Brain Behav ; 6(1): e00417, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27110440

RESUMEN

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, that is, reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example, a model organism database for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( http://scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40 with RRIDs appearing in 62 different journals to date. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources.


Asunto(s)
Investigación Biomédica/instrumentación , Equipos y Suministros , Químicos de Laboratorio , Publicaciones Periódicas como Asunto , Edición , Investigación Biomédica/métodos , Bases de Datos Factuales , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados
5.
J Comp Neurol ; 524(1): 8-22, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26599696

RESUMEN

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the Methods sections of articles and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their articles prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example, a model organism database for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central Web portal (http://scicrunch.org/resources). RRIDs meet three key criteria: they are machine-readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 articles have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40, with RRIDs appearing in 62 different journals to date. Here we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources.


Asunto(s)
Curaduría de Datos/métodos , Edición , Animales , Anticuerpos , Exactitud de los Datos , Bases de Datos Factuales , Internet , Modelos Animales , Proyectos Piloto , Reproducibilidad de los Resultados , Programas Informáticos
6.
F1000Res ; 4: 134, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26594330

RESUMEN

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to allow humans and algorithms to identify the exact resources that are reported or answer basic questions such as "What other studies used resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (including software and databases). RRIDs represent accession numbers assigned by an authoritative database, e.g., the model organism databases, for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( www.scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are generally accurate in performing the task of identifying resources and supportive of the goals of the project. We also show that identifiability of the resources pre- and post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on reproducibility relating to research resources.

7.
Int Rev Neurobiol ; 103: 39-68, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23195120

RESUMEN

The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research.


Asunto(s)
Biología Computacional , Bases de Datos como Asunto , Almacenamiento y Recuperación de la Información , Neurociencias , Animales , Humanos
8.
Front Genet ; 3: 111, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737162

RESUMEN

An initiative of the NIH Blueprint for neuroscience research, the Neuroscience Information Framework (NIF) project advances neuroscience by enabling discovery and access to public research data and tools worldwide through an open source, semantically enhanced search portal. One of the critical components for the overall NIF system, the NIF Standardized Ontologies (NIFSTD), provides an extensive collection of standard neuroscience concepts along with their synonyms and relationships. The knowledge models defined in the NIFSTD ontologies enable an effective concept-based search over heterogeneous types of web-accessible information entities in NIF's production system. NIFSTD covers major domains in neuroscience, including diseases, brain anatomy, cell types, sub-cellular anatomy, small molecules, techniques, and resource descriptors. Since the first production release in 2008, NIF has grown significantly in content and functionality, particularly with respect to the ontologies and ontology-based services that drive the NIF system. We present here on the structure, design principles, community engagement, and the current state of NIFSTD ontologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA